高考物理子弹打木块专题共19页文档
- 格式:ppt
- 大小:2.15 MB
- 文档页数:19
模型组合讲解——子弹打木块模型赵胜华[模型概述]子弹打木块模型:包括一物块在木板上滑动等。
Q E s F k N =∆=系统相μ,Q 为摩擦在系统中产生的热量;小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动;一静一动的同种电荷追碰运动等。
[模型讲解]例. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力f F 做负功,由动能定理得:2022121)(mv mv s d F t f -=+- 即f F 对物块做负功,使物块动能减少。
对木块,滑动摩擦力f F 对木块做正功,由动能定理得221Mv s F f =,即f F 对木块做正功,使木块动能增加,系统减少的机械能为:><=-+=--1)(2121212220d F s F s d F Mv mv mv f f f t本题中mg F f μ=,物块与木块相对静止时,v v t =,则上式可简化为:><+-=2)(2121220t v M m mv mgd μ又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:><+=3)(0tv M m mv联立式<2>、<3>得:)(220m M g Mv d +=μ故系统机械能转化为内能的量为:)(2)(22020m M Mmv m M g Mv mg d F Q f +=+⋅==μμ点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即E s F f ∆=。
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
模型界定本模型主要是指子弹击中非固定的、光滑木块的物理情景,包括一物块在木板上滑动、小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动、一静一动的同种电荷追碰运动等等,本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
模型破解运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动(在其他一动一静情景中物体可做变加速运动甚至是曲线运动)。
图象描述:从子弹击中木块时刻开始,在同一个v —t 坐标中,两者的速度图线如图1中甲(子弹穿出木块)或乙(子弹停留在木块中).上图中,图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移,两种情况下都有M m s s d -=。
1.子弹未击穿木块(如图2)(i )木块的长度不小于二者位移之差21s s d L -=≥。
图1图2(ii )二者作用时间非常短暂,在某一方向上动量守恒。
(iii)作用结束时二者以同一速度开始新的运动mM mv v +=。
(iv )二者速度相同时木块的速度最大,相对位移(即子弹射入的深度)最大)(22m M f Mmv d +=。
(v )子弹射入木块的深度大于木块的对地位移22s s mmM d >+=。
(vi )当m M >>时d s <<2,这说明,一般情况在子弹射入木块过程中,木块的位移很小,可以忽略不计,即作用结束时系统以相同的速度从作用前的位置开始新的运动。
(vii )系统在只通过摩擦力实现动量的转移及能量的转化时,系统的机械能不守恒,其动能的变化量20)(2v m M Mm E k +=∆等于摩擦产生的热量,也等于摩擦力与相对位移的乘积Q =fs 相对。
(系统间无摩擦而通过其它力作用时,系统动能的减少量等于其它形式的能量的增加,如小球在置于光滑水平面上的竖直平面内弧形光滑轨道上,滑动中系统动能的减少量等于小球增加的重力势能;在一静一动的同种电荷追碰运动中系统动能的减少量等于系统电势能的增加量等) (viii )涉及动态分析判定时用图象较为方便。
子弹打击木块模型题目分析子弹打击木块模型在物理题型中比较常见,它很容易将力、动量、能量结合起来综合考查学生的能力。
我们要抓住子弹打击木块时间短、子弹和木块之间的作用力大这两个特点来分析这类问题。
【例1】一颗子弹水平射入置于光滑水平面上的木块A 中并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图(1)所示,则在子弹打中木块A 即弹簧被压缩的过程中,对于子弹、两木块和弹簧组成的系统( ) A .动量守恒,机械能守恒 B .动量不守恒,机械能守恒 C .动量守恒,机械能不守恒 D .无法判断动量、机械能是否守恒 【答案】C【解析】由于子弹打入木块及压缩弹簧的整个过程中系统所受的合外力等于零,则系统的动量守恒。
由于子弹打入木块木块的过程中子弹和木块间的摩擦力做功,使机械能的一部分转化为内能,所以系统的机械能不守恒。
【例2】如图(2)所示装置,木块B 与水平面得接触是光滑的,子弹A 从水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象,则此系统在从子弹射入木块到弹簧压缩至最短的过程中( )A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒 【答案】B【解析】A 射入木块的短暂时间内,弹簧还来不及发生形变,系统所受的合外力为零,总动量守恒;但在这个过程中子弹和木块之间的摩擦力对系统做功,系统的机械嫩转化为内能,故系统的机械能不守恒。
子弹和木块达到共同速度后,系统受到墙壁力的作用,系统的总动量不守恒,但墙壁对系统的力不做功,系统的机械能守恒。
故整个过程中系统动量不守恒,机械能也不守恒,选B 。
【例3】如图(3)所示,用长为L 细线悬挂一质量为M 的木块,有一质量为m 的子弹从左向右水平射穿此木块,穿透前后子弹的速度分别为v 0和v ,子弹穿过木块的时间和空气的阻力不计,求(1)子弹穿过木块后木块的速度v M 大小;(2)子弹穿过木块瞬间细线的拉力T 的大小;(3) 子弹穿过木块的过程中子弹和木块系统损失的机械能为多少? 【解析】(1)子弹穿透木块的过程中,以子弹和木块为系统在水平方向上受合力为零,故系统在水平方向上动量守恒。
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
动量定理、动能定理专题----子弹打木块模型一、模型描述:此模型主要是指子弹击中未固定的光滑木块的物理场景,如图所示。
其本质是子弹和木块在一对力和反作用力(系统内力)的作用下,实现系统内物体动量和能量的转移或转化。
二、方法策略:(1) 运动性质:在该模型中,默认子弹撞击木块过程中的相互作用力是恒恒力,则子弹在阻力的作用下会做匀减速直线性运动;木块将在动力的作用下做匀加速直线运动。
这会存在两种情况:(1)最终子弹尚未穿透木块,(2)子弹穿透木块。
(2) 基本规律:如图所示,研究子弹未穿透木块的情况:三、图象描述:在同一个v-t坐标中,两者的速度图线如图甲所示。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图乙所示。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对比出物块的对地位移和子弹的相对位移,从而从能量的角度快速分析出系统产生的热量一定大于物块动能的大小。
四、模型迁移子弹打木块模型的本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙木板上滑动、一静一动的同种电荷追碰运动,一静一动的导体棒在光滑导轨上切割磁感线运动、小球从光滑水平面上的竖直平面内弧形光滑轨道最低点上滑等等,如图所示。
(1)典型例题:例1.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F,求:(1)子弹与木块相对静止时二者共同速度为多大?(2)射入过程中产生的内能和子弹对木块所做的功分别为多少?(3)木块至少为多长时子弹才不会穿出?1. 一颗速度较大的子弹,以速度v 水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大为2v 时,下列说法正确的是( )A. 子弹对木块做的功不变B. 子弹对木块做的功变大C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:子弹的入射速度越大,子弹击中木块所用的时间越短,木块相对地面的位移越小,子弹对木块做的功W =fs 变小,选项AB 错误;子弹相对木块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产生的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
动量守恒的十种模型子弹打木块模型模型解读子弹打木块模型,,一般要用到动量守恒,动量定理,动能定理及动力学等规律,综合性强,能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型,。
两种情景情景1子弹嵌入木块中,两者速度相等,类似于完全非弹性碰撞,机械能损失最多。
情景2子弹穿透木块,从木块中飞出,类似于非完全弹性碰撞,机械能有损失,损失的机械能等于子弹与木块之间作用力乘以L 。
【典例精析】1(2024山西运城3月质检)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切。
质量为M 的小木块静止在O 点,一个质量为m 的子弹以某一初速度水平向右射入长为L 木块内,恰好没穿出木块,然后与木块一起继续运动,且恰能到达圆弧轨道的最高点C (木块和子弹均可以看成质点)。
求:(1)子弹射入木块前的速度;(2)子弹打入木块过程中产生的热量Q ;(3)若每当小木块返回到O 点或停止在O 点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【参考答案】(1)m +Mm2gR ;(2)Q =M M +m gR m (3)m +MM +9m2R【名师解析】(1)第一颗子弹射入木块的过程,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得mv0=m+Mv1系统由O到C的运动过程中机械能守恒,由机械能守恒定律得1 2m+Mv21=m+MgR由以上两式解得v0=m+Mm2gR (2)由Q=12mv20-12M+mv21得Q=M M+mgRm(3)由动量守恒定律可知,第2,4,6⋯颗子弹射入木块后,木块的速度为0,第1,3,5⋯颗子弹射入后,木块运动。
当第9颗子弹射入木块时,以子弹初速度方向为正方向,由动量守恒定律得mv0=9m+Mv9设此后木块沿圆弧上升的最大高度为H,由机械能守恒得1 29m+Mv29=9m+MgH由以上各式可得H=m+MM+9m2R【针对性训练】1(2024江苏镇江质检)一木块静止在光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2cm 后相对于木块静止,同一时间内木块被带动前移了1cm,则子弹损失的动能、木块获得动能之比为()A.3:2B.3:1C.2:1D.2:3【参考答案】B【名师解析】在运动的过程中,子弹相对运动的位移x1=2cm木块向前运动的位移为x2=1cm子弹的位移为x=x1+x2=3cm根据动能定理得,对子弹有-fx =ΔE k 1子弹损失的动能大小为ΔE k 1 =fx对于木块,有fx 2=ΔE k 2木块获得动能E k 2=fx 2则子弹损失的动能、木块获得动能之比为ΔE k 1 :E k 2=3:1故选B 。
子弹打木块类的问题[模型要点]子弹打木块的两种常见类型:①木块放在光滑的水平面上,子弹以初速度v0射击木块。
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
图象描述:从子弹击中木块时刻开始,在同一个v—t坐标中,两者的速度图线如下图中甲(子弹穿出木块)或乙(子弹停留在木块中)图2图中,图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移。
方法:把子弹和木块看成一个系统,利用A:系统水平方向动量守恒;B:系统的能量守恒(机械能不守恒);C:对木块和子弹分别利用动能定理。
【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:……①对木块用动能定理: ……②①、②相减得: ……③点评:这个式子的物理意义是:f ·d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
例1:质量为M 的木块静止在光滑水平面上, 有一质量为m 的子弹以水平速度v 0 射入并留在其中,若子弹受到的阻力恒为f ,问: 问题1 子弹、木块相对静止时的速度v 问题2 子弹在木块内运动的时间问题3 子弹、木块发生的位移以及子弹打进木块的深度 问题4 系统损失的机械能、系统增加的内能子弹在木块中前进的距离L 为多大解:由几何关系: S 1 –S 2= L 答案:[2f(M + m)]Mmv 02以m 和 M 组成系统为研究对象,选向右为正方向,动量守恒定律:mv 0 =(M + m )V 分别选m 、 M 为研究对象,由动能定理得: 对子弹 -f S 1= 12mV 2- 12mv 02对木块f S 2 = 12M V 2由以上两式得 f L =12mv 02-12(m +M )V 2推论:系统损失的机械能等于阻力乘以相对位移,即ΔE 损=F f d针对1:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
动量和能量专题之“子弹打木块”“子弹打木块”类问题是涉及的内容是动力学内容的继续和深化,其中的动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。
中学物理中非常典型的物理模型,他包括相互间恒力作用的“子弹木块”等模型,几乎涉及到力学的全部主要的概念与规律,这些力学主干知识高考每年必考;因此“子弹打木块”类问题也就成了高考中非常普遍的一类题型,此类问题考核的实质是如何运用力和运动的瞬时关系分析动态变化过程,挖掘其中所蕴涵的隐含条件与临界状态,然后优选动量和能量观点去解题。
本节通过“子弹打木块”类问题对力学知识、方法进行概括和总结,以提高分析、解决力学综合问题的能力。
一、常见模型:1.“木块”不固定(或“木块”固定);2.“木块和木块”作用模型。
二、模型理解:质量为m 的子弹,以速度V 0水平射入光滑水平面上质量为M 的木块中未穿出。
子弹深入木块时所受的阻力大小恒为f规律:动量守恒定律:mV 。
=(M+m )V动能定理:子弹 -f S m = mV 2/2-mV 02/2木块 -f S M = MV 2/2-0功能关系:f d = mV 02/2-(M+m)V 2/2能量转化:子弹动能减少:f S m = mV 02/2- mV 2/2木块动能增加:f S M = MV 2/2系统机械能减少:f S m - f S M =mV 02/2-(M+m)V 2/2内能增量:f S m - f S M = mV 02/2-(M+m)V 2/2产生热量:f d =f S m - f S M =mV 02/2-(M+m)V 2/2三、“子弹打木块”类问题常见模型分析1.“木块”不固定(或“木块”固定)“子弹击木块”模型可分为两种:一种是子弹击中木块的瞬间获得共同的速度,此模型满足动量守恒定律;另一种是子弹在木块中穿行,因水平面光滑,系统动量也守恒,同时子弹与木块间的摩擦力做功影响着两者动能的变化。