子弹打木块模型习题
- 格式:doc
- 大小:104.00 KB
- 文档页数:2
例:质量为m=50g的子弹,以v0=50 m/s的速度沿水平方向击穿一块静放在光滑水平面上质量为M=50g的木块后,子弹的速度减为v=3`0 m/s,求:
(1)求木块因子弹射击所获得的速度多大?
(2)若木块对子弹的阻力f=100N,则子弹、木块的位移各是多少?
(3)木块的长度L是多少?
(4)fL=?
(5)系统的动能损失E损多少?
(6)比较fL与E损,可以得到什么结论,损失的能量到哪去了?
练习
1、如图15所示,质量mA=0.9 kg的长板A静止在光滑的水平面
上,质量mB=0.1 kg的木块B以初速v0=10 m/s滑上A板,最后
B木块停在A板上.求:
(1)物块与木板的做什么运动?
(2)物块与木板最后的速度?
(3)当物块与木板相对静止时,摩擦力对木板所做的功是多少?
(4)当物块与木板相对静止时,摩擦力对物块所做的功是多少?
(5)摩擦力对系统做的功是多少?
(6)整个过程系统机械能转化为内能的量Q?
(7)欲使物块不脱离木板,则物块最初速度满足什么条件?
(单选)2、如图,质量为M的木板静止在光滑水平面上。
一个质量为m的小滑块以初速度V0从木板的左端向右滑上木板。
滑块和木板的水平速度随时间变化的图象如图所示.某同学根据图象作出如下一些判断,不正确的是()
A.滑块与木板间始终存在相对运动
B.滑块始终未离开木板
C.滑块的质量大于木板的质量
D.在t1时刻滑块从木板上滑出。
子弹打木块模型子弹打木块问题是力学综合问题,涉及运动学公式与力,动量(动量守恒定律、动量定力),能量(动能定理、能量守恒定理、功能关系)。
熟练应用这些力学规律,可以解决相关问题。
一、单选题1.能量的形式有多种并且通过做功会发生相互转化.如下图所示,在光滑水平面上,子弹m水平射入木块后留在木块内.现将子弹、弹簧、木块合在一起作为研究对象,则此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,则系统的 ()A.子弹与木块有摩擦阻力,能量不守恒,机械能不守恒B.子弹与木块有摩擦阻力,但能量和机械能均守恒C.子弹与木块有摩擦阻力,但能量守恒,机械能不守恒D.能量不守恒,机械能守恒2.如图所示的装置中,木块通过一细线系在O点,子弹沿水平方向射入木块(子弹射入木块过程时间极短,可认为细线不发生摆动)后留在木块内,接着细线摆过一角度θ.若不考虑空气阻力,对子弹和木块组成的系统,下列说法正确的是 ()A.在子弹射入木块的过程中机械能守恒B.在子弹射入木块后,细线摆动的过程机械能守恒C.从子弹开始射入木块到细线摆过θ角的整个过程机械能守恒D.无论是子弹射入木块过程,还是子弹射入木块后细线摆动的过程机械能都不守恒3.子弹的速度为v,打穿一块固定的木块后速度刚好变为零.若木块对子弹的阻力为恒力,那么当子弹射入木块的深度为其厚度的一半时,子弹的速度是()A.B.vC.D.4.如图所示,木块A、B并排且固定在水平桌面上,A的长度是L,B的长度是2L.一颗子弹沿水平方向以速度v1射入A,以速度v2穿出B.子弹可视为质点,其运动视为匀变速直线运动,则子弹穿出A时的速度为()A.(v1+v2)B.C.D.v15.1964年至1967年6月我国第一颗原子弹和第一颗氢弹相继试验成功,1999年9月18日,中共中央、国务院、中央军委隆重表彰在研制“两弹一星”中作出贡献的科学家。
下列核反应方程式中属于原子弹爆炸的核反应方程式的是()A.U→Th +HeB.U +n→Sr +Xe +10nC.N +He→O +HD.H +H→He +n6.如图所示,质量为m的子弹水平飞行,击中一块原来静止在光滑水平面上的质量为M的物块,物块由上下两块不同硬度的木块粘合而成.如果子弹击中物块的上部,恰不能击穿物块;如果子弹击中物块的下部,恰能打进物块中央.若将子弹视为质点,以下说法中错误的是A.物块在前一种情况受到的冲量与后一种情况受到的冲量相同B.子弹前一种情况受到的冲量比后一种情况受到的冲量大C.子弹前一种情况受到的阻力小于后一种情况受到的阻力D.子弹和物块作为一个系统,系统的总动量守恒7.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是 ( )A.枪和弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒8.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A,B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统 ()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒9.如图所示,木块B与水平弹簧相连,放在光滑水平面上,子弹A沿水平方向射入木块后留在木块B内,入射时间极短,而后木块将弹簧压缩到最短.关于子弹和木块组成的系统,下列说法中正确的是()①子弹射入木块的过程中系统动量守恒②子弹射入木块的过程中系统机械能守恒③木块压缩弹簧过程中,系统总动量守恒④木块压缩弹簧过程中,子弹、木块和弹簧组成的系统机械能守恒A.①③B.②③C.①④D.②④10.游乐场内两支玩具枪在同一位置先后沿水平方向各射出一颗子弹,打在远处的同一个靶上,A 为甲枪子弹留下的弹孔,B为乙枪子弹留下的弹孔,两弹孔在竖直方向上相距高度为h,如图所示,不计空气阻力.关于两枪射出的子弹初速度大小,下列判断正确的是()A.甲枪射出的子弹初速度较大B.乙枪射出的子弹初速度较大C.甲,乙两枪射出的子弹初速度一样大D.无法比较甲,乙两枪射出的子弹初速度的大小11.游乐场内两支玩具枪在同一位置先后沿水平方向各射出一颗子弹,打在远处的同一个靶上,A 为甲枪子弹留下的弹孔,B为乙枪子弹留下的弹孔,两弹孔在竖直方向上相距高度为h,如图所示,不计空气阻力。
一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v 0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v 对系统应用动能定理得fd =12mv 20-12(M +m )v 2由上面两式消去v 可得 fd =12mv 20-12(m +M )(mv 0m +M )2整理得12mv 20=m +M M fd即12mv 20=(1+m M)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。
—颗质量为的子弹从木块的左端打进。
设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。
由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
子弹打木块模型专题(一)模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹-f(s+l)= ② 对木块fs= ③ 由①式得v= 代入③式有fs=④ ②+④得f l = 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统=fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件②作出作用过程中二者的速度-时间图像,你会有什么规律发现例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A . B. C. D.滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=,g 取10m/s 2。
求两木板的最后速度。
2022121mv mv -0212-MV )(0v v M m -2022)(21v v Mm M -•})]([2121{21212121202202220v v M m M mv mv MV mv mv -+-=--)(21020v v v m -)(00v v mv -s vd v v m 2)(0-vd S v v m )(0-2.如图示,一质量为M长为l的长方形木块B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,现以地面为参照物,给A和B以大小相等、方向相反的初速度使A开始向左运动,B开始向右运动,但最后A 刚好没有滑离B板。
子 弹 打 木 块 习 题1子弹以一定的初速度射入放在光滑水平面上的木块中,并共同运动下列说法中正确的是:( )A 、子弹克服阻力做的功等于木块动能的增加与摩擦生的热的总和B 、木块对子弹做功的绝对值等于子弹对木块做的功C 、木块对子弹的冲量大小等于子弹对木块的冲量D 、系统损失的机械能等于子弹损失的动能和子弹对木块所做的功的差2、 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图14.木板M 放在光滑水平面上,木块m 以初速度V 0滑上木板,最终与木板一起运动,两者间动摩擦因数为μ,求:○1.木块与木板相对静止时的速度; ○2.木块在木板上滑行的时间; ○3.在整个过程中系统增加的内能; ○4.为使木块不从木板上掉下,木板至少多长 5 一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A (可视为质点)以水平速度v 0从长木板的一端开始在木板上滑动,到达另一端滑块刚离开木板时的速度为1/3v 0 ,若把此木板固定在水平桌面上,其它条件相同,求:滑块离开木板时的速度。
6、 如图所示,质量为M =2kg 的小车放在光滑水平面上,在小车右端放一质量为m=1kg 的物块。
两者间的动摩擦因数为μ=,使物块以v 1=s 的水平速度向左运动,同时使小车以v 2=s 的初速度水平向右运动, (取g= 10m/s 2)求:(1)物块和小车相对静止时,物块和小车的速度大小和方向(2)为使物块不从小车上滑下,小车的长度L 至少多大7如图示,在光滑水平桌面上静置一质量为M=980克的长方形匀质木块,现有一颗质量为 m=20克的子弹以v 0 = 300m/s 的水平速度沿其轴线射向木块,结果子弹留在木块中没有射出,和木块一起以共同的速度运动。
符合的规律:子弹和木块组成的系统动量守恒,机械能不守恒。
重要结论:系统损失的机械能等于阻力乘以相对位移,即:。
共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定律和。
例1. 子弹质量为m,以速度水平打穿质量为M,厚为d的放在光滑水平面上的木块,子弹的速度变为v,求此过程系统损失的机械能。
解析:①对子弹用动能定理:②②式中s为木块的对地位移对木块用动能定理:③由②③两式得:④由①④两式解得:例2. 如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
图1分析:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即。
解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或动量守恒求出转化为内能的量Q。
对物块,滑动摩擦力做负功,由动能定理得:即对物块做负功,使物块动能减少。
对木块,滑动摩擦力对木块做正功,由动能定理得:即对木块做正功,使木块动能增加,系统减少的机械能为:①本题中,物块与木块相对静止时,,则上式可简化为:②又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:③联立式②、③得:故系统机械能转化为内能的量为:例3. 如图2所示,两个小球A和B质量分别为,。
球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动。
假设两球相距时存在着恒定的斥力F,时无相互作用力。
当两球相距最近时,它们间的距离为,此时球B的速度是4m/s。
求:(1)球B的初速度;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间。
图2解析:(1)设两球之间的斥力大小是F,两球从开始相互作用到两球相距最近时所经历的时间是t,当两球相距最近时球B的速度是,此时球A的速度与球B的速度大小相等,。
专题04 子弹打木块模型1.(2017福建霞浦一中期中)如图所示,在光滑水平面上有一辆质量M=8kg的平板小车,车上有一个质量m=1.9 kg的木块(木块可视为质点),车与木块均处于静止状态.一颗质量m0=0.1kg 的子弹以v0=200m/s的初速度水平向左飞,瞬间击中木块并留在其中.已知木块与平板之间的动摩擦因数μ=0.5,(g=10m/s2)求:(1)子弹射入木块后瞬间子弹和木块的共同速度(2)若木块不会从小车上落下,求三者的共同速度(3)若是木块刚好不会从车上掉下,则小车的平板至少多长?【解答】解:(1)子弹射入木块过程系统动量守恒,以水平向左为正,则由动量守恒有:m0v0=(m0+m)v1,解得:v1===10m/s;(2)子弹、木块、小车系统动量守恒,以向左为正方向,由动量守恒定律得:(m0+m)v1=(m0+m+M)v,解得:v===2m/s;(3)子弹击中木块到木块相对小车静止过程,由能量守恒定律得:(m0+m)v12=μ(m0+m)gL+(m0+m+M)v2,解得:L=8m;答:(1)子弹射入木块后瞬间子弹和木块的共同速度为10m/s.(2)若木块不会从小车上落下,三者的共同速度为2m/s.(3)若是木块刚好不会从车上掉下,则小车的平板长度至少为8m.2 . 如图所示,在光滑水平地面上的木块M紧挨轻弹簧靠墙放置。
子弹m以速度v0沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩劲度系数未知弹簧至弹簧最短.已知子弹质量为m,木块质量是子弹质量的9倍,即M=9m;弹簧最短时弹簧被压缩了△x;劲度系数为k、形变量为x的弹簧的弹性势能可表示为E p=12kx2。
求:(i)子弹射入木块到刚相对于木块静止的过程中损失的机械能;(ii)弹簧的劲度系数。
【名师解析】(1)设子弹射入木块到刚相对于木块静止时的速度为v,由动量守恒定律,mv0=(m+M)v,解得v= v0/10。
设子弹射入木块到刚相对于木块静止的过程中损失的机械能为△E,由能量守恒定律:△E=12mv02-12(m+M)v2代入数据得△E =2920 mv。
专题:子弹打木块模型例题:【例1】光滑水平面上 静置着一质量为M 的小车一颗质量为m 的木块以速度V 0水平滑向小车.木块滑出后,木块速度减为V 1, 小车的速度增为V 2.将此过程中下列说法补全完整:A. 木块克服阻力做功为 。
B. 木块对小车做的功为 。
C. 木块减少的动能 小车增加的动能. D 系统产生的热量为 。
【例2】在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速v0水平射入木块,且陷入木块的最大深度为d 。
设冲击过程中木块的运动位移为s ,子弹所受阻力恒定。
试证明:s<d【例3】如图所示,质量为3m ,长度为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度为52v 0,设木块对子弹的阻力始终保持不变. (1)求子弹穿透木块后,木块速度的大小; (2)求子弹穿透木块的过程中,木块滑行的距离s ;(3)子弹穿过木块的整个过程中,子弹和木块在所组成的系统所产生的热量是多少?【例4】如图7-34,一轻质弹簧的两端连接两滑块A 和B ,已知m A =0.99kg, m B =3kg,放在光滑水平桌面上,开始时弹簧处于原长,现滑块被水平飞来的质量为m C =10g ,速度为400m/s 的子弹击中,且没有穿出,试求:(1)子弹击中滑块A 后的瞬间滑块A 和B 的速度; (2)以后运动过程中弹簧的最大弹性势能; (3)滑块B 可能获得的最大动能。
m Mv 0 L 3m m AB 0 图7-34【练习】1.如图6-13所示,木块与水平弹簧相连放在光滑水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,尔后木块将弹簧压缩到最短,关于子弹和木块组成的系统,下列说法正确的是:( )A .从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒B .子弹射入木块的过程中,系统动量守恒C .子弹射入木块的过程中,系统动量不守恒D .木块压缩弹簧过程中,系统动量守恒2、物块A 、B 用一根轻质弹簧连接起来,放在光滑水平面上,A 紧靠墙壁,在B 上施加向左的水平力使弹簧压缩,如图7-25所示,当撤去此力后,下列说法正确的是:( )A.A 尚未离开墙壁前,弹簧和B 的机械能守恒B.A 尚未离开墙壁前,A 和B 的总动量守恒C.A 离开墙壁后,A 和B 的系统的总动量守恒D.A 离开墙壁后,弹簧和A 、B 系统的机械能守恒3.如图6-14,光滑水平面上有A.B 两物体,其中带有轻质弹簧的B 静止,质量为m 的A 以速度v o 向着B 运动,A 通过弹簧与B 发生相互作用的过程中:( )(1)弹簧恢复原长时A 的速度一定最小 (2)两物体速度相等时弹簧压缩量最大(3)任意时刻系统总动量均为mv o (4)任一时刻B 的动量大小总小于mv oA .(1)(3)B .(2)(3)C .(1) (3) (4)D .(2) (4)4.如图7-17所示,质量为M 的木板B 放在光滑水平面上,有一质量为m 的滑块A 以水平向右的初速度v 0滑上木板B ,A 与木板之间的动摩擦因数为μ,且滑块A 可看做质点,那么要使A 不从B 的上表面滑出,木板B 至少应多长?5.如图6-28所所示,abc 是光滑的轨道,其中ab 是水平的,bc 为ab 与相切的位于竖直平面内的半圆,半径R=0.30m ,质量m=0.20Kg 的小球A 静止在轨道上,另一质量M=0.60Kg ,速度v 0=5.5m/s 的小球B 与小球A 正碰。
子 弹 打 木 块 习 题
1子弹以一定的初速度射入放在光滑水平面上的木块中,并共同运动下列说法中正确的是:( )
A 、子弹克服阻力做的功等于木块动能的增加与摩擦生的热的总和
B 、木块对子弹做功的绝对值等于子弹对木块做的功
C 、木块对子弹的冲量大小等于子弹对木块的冲量
D 、系统损失的机械能等于子弹损失的动能和子弹对木块所做的功的差
2、 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1
4.木板M 放在光滑水平面上,木块m 以初速度V 0滑上木板,最终与木板一起运动,两者间动摩擦
因数为μ,求:
○
1.木块与木板相对静止时的速度; ○
2.木块在木板上滑行的时间; ○
3.在整个过程中系统增加的内能; ○4.为使木块不从木板上掉下,木板至少多长?
5 一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A (可视为质点)以水平速度v 0从长木板的一端开始在木板上滑动,到达另一端滑块刚离开木板时的速度为1/3v 0 ,若把此木板固定在水平桌面上,其它条件相同,求:滑块离开木板时的速度。
3
0V
6、 如图所示,质量为M =2kg 的小车放在光滑水平面上,在小车右端放一质量为m=1kg 的物块。
两者间的动摩擦因数为μ=0.1,使物块以v 1=0.4m/s 的水平速度向左运动,同时使小车以v 2=0.8m/s 的初速度水平向右运动, (取g= 10m/s 2)求:
(1)物块和小车相对静止时,物块和小车的速度大小和方向
(2)为使物块不从小车上滑下,小车的长度L 至少多大
7如图示,在光滑水平桌面上静置一质量为M=980克的长方形匀质木块,现有一颗质量为 m=20克的子弹以v 0 = 300m/s 的水平速度沿其轴线射向木块,结果子弹留在木块中没有射出,和木块一起以共同的速度运动。
已知木块沿子弹运动方向的长度为L=10cm ,子弹打进木块的深度为d=6cm ,设木块对子弹的阻力保持不变。
(1)求子弹和木块的共同的速度以及它们在此过程中所增加的内能。
(2)若子弹是以V 0 = 400m/s 的水平速度从同一方向射向该木块的,则它能否射穿该木块?
(3)若能射穿木块,求子弹和木块的最终速度是多少?
8、如图所示,质量为M 的小车左端放一质量为m 的物体.物体与小车之间的摩擦系数为μ,现在小车与物体以速度v 0在水平光滑地面上一起向右匀速运动.当小车与竖直
墙壁发生弹性碰撞后,物体在小车上向右滑移一段距离后一起向左运
动,求物体在小车上滑移的最大距离.
9、如图所示,质量为M 的水平木板静止在光滑的水平地面上,板在左端放一质量为m 的铁块,现给铁块一个水平向右的瞬时冲量使其以初速度V 0开始运动,并与固定
在木板另一端的弹簧相碰后返回,恰好又停在木板左端。
求:
⑴整个过程中系统克服摩擦力做的功。
⑵若铁块与木板间的动摩擦因数为 ,则铁块对木块相对位移的最大值是多少?⑶系统的最大弹性势能是多少?。