2015全国大学生数学建模竞赛B题
- 格式:doc
- 大小:686.00 KB
- 文档页数:20
赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):B我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):评阅人备注送全国评阅统一编号(由赛区组委会填写):全国评阅随机编号(由全国组委会填写):(此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。
注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。
)“互联网+”时代的出租车资源配置摘要:“互联网+”就是利用互联网平台、信息通信技术,将互联网及包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态。
基于供求匹配率的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
为分析不同时空出租车资源的供求匹配程度,引入出租车资源供求匹配率这一指标,指标的定义为城市中实际运行的出租车辆数与居民出行需要的出租车辆数之比,反映城市中实际运行的出租车辆数与居民出行需要的出租车辆数之间的差异。
计算得出2013年出租车供求匹配率为0.7766,表示供不应求。
居民出行需要的出租车辆数与居民人均日出行次数、城市总人口数量、居民出行选择乘坐出租车的比例有关,也与每辆出租车日均载客次数、每单载客人数和车辆满载率有关。
对于居民人均日出行次数,利用十五个国大中城市的数据,将十二个城市经济指标聚类分析选出每类指标中典型的经济指标,建立居民人均日出行次数与这些典型经济指标间的多元线性回归方程,而与居民出行需要的出租车辆数相关的其他指标可查阅文献或年鉴获得。
分析市每天6:00-8:30,11:00-12:30,13:30-14:30,17:00-18:30四个时间段得供求匹配率分别为0.4111,0.5678,0.6062,0.5631,结果显示供不应求。
得到、、、、、、、八座城市的出租车资源供求匹配率分别为1.0936、0.8827、0.9430、0.7040、0.7049、0.7666、0.6583、0.5252,表明只有的出租车资源是供大于求,而其余七座城市为供小于求。
为了分析各公司的出租车补贴方案对缓解打车难是否有帮助,定性分析出租车日均载客次数、出租车满载率随打车软件对出租车司机每单补贴金额的变化趋势,分别建立阻滞增长模型,进而分析打车软件对出租车司机每单补贴金额的变化对所建指标的影响。
得到的结论为:对于使用打车软件的乘客来说,出租车补贴方案能够缓解打车难的问题;而对于不使用打车软件的乘客来说,出租车补贴方案则不能缓解打车难的问题。
精心整理“互联网+”时代的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
软件公司三方的满意度,利用熵值法确定这三方各自满意度的权重,将三方满意度加权之和作为综合满意度,进而以综合满意度为目标函数,以打车软件对出租车司机每单补贴金额为控制变量,以补贴金额设置的范围为约束条件建立优化模型。
遍历所有可能的方案得到最优补贴方案为对出租车司机每单补贴9元,综合满意度为0.5710。
关键词:聚类分析;回归分析;灰色预测;阻滞增长模型;熵值法;最优化一、问题重述随着经济的发展,近年来,人们对出行的要求不断提高,城市出租车以其方便、快捷、舒适和私密性的特点成为越来越多人的出行选择。
但是,国内各大城市交通问题日趋严重,“打车难”也是人们关注的一个社会热点问题。
数据显示,包括上海、杭州等众多大城市,出租车非高峰期的空驶率始终在30%上下徘徊,而高峰期却打不到车。
这与众多市民反映的打车难背后所隐藏的强烈需求看似形成了一个矛盾。
究其原因,最主要的莫过于司机与乘客需求信息不对称,缺乏及时沟通交流的平台。
通过查阅文献可以确定居民出行选择出租车作为出行方式的比例从而,计算得出城市的出租车运输量的需求量。
然后根据供需平衡法预测出城市出租车需求量。
将城市实际出租车数量与城市出租车需求数量作比,得到衡量出租车资源的供求匹配程度的指标即供求匹配率。
对未来城市的出租需求量进行灰色关联预测,得到未来城市的出租需求量,通过计算不同城市的出租车需求量,进行不同时空的出租车资源供求匹配的分析。
对于各公司的出租车补贴方案是否对“缓解打车难”有帮助问题,由于难以得到各公司不同时间的补贴方案对居民打车难度的实际影响效果数据,我们从公司对每单的补贴金额入手,分析每单补贴金额范围为0~15元,认为补贴金额再高对公司利益有较大损失。
2015数学建模B题;(公选课);后打车时代究竟能走多远;--基于数学分析的打车软件盈利模式的评估体系;1.摘要打车软件作为新兴的交易平台,增加了交易机;其次,改变了支付方式;2.模型的假设;①打车软件开拓的市场基本成熟,大公司的投资也不再;②假设软件公司为用户提高的生活服务质量日趋完善,;覆盖率每年增长,但增长速度每年递减,最后使用打车;定在一定数量(即达后打车时代究竟能走多远--基于数学分析的打车软件盈利模式的评估体系1.摘要打车软件作为新兴的交易平台,增加了交易机会。
且与街头扬招方式相比,打车软件优势也很明显,它可以让出租车司机迅速找到它的客户。
出租车正在寻找客人而“空跑”。
打车软件的出现则改变了这种信息不对称,大大降低了司机的“空载率”,减少了司机和乘客之间的交易成本——司机扫街和乘客扫街的时间成本。
其次,改变了支付方式。
传统现金交易有两个弊病,一是安全性。
另外,大量现金交易增加了司机的交易成本:时不时收到假钞,蒙受经济损失;每周几次到银行存钱也增加了时间成本。
这些优势就使得打车软件极具有盈利的可能,只有软件找到用户并增强对他们的粘性,就有许多渠道来针对他们来盈利。
随着近两年打车软件的兴起,从原先40多款打车软件的百花齐放演变成现在的嘀嘀、快的双雄争霸,市场竞争也趋于白热化。
2014年伊始,嘀嘀打车和快的打车进入史上空前的“烧钱大战”,在高峰期甚至达到2月17日乘客返现10—15元,新司机首单立奖50元,而且每单都有补贴十块。
目前两大打车软件纷纷将针对乘客的补贴降至3元/单,对司机端的补贴,嘀嘀是5元/单,快的4元/单。
部分城市的嘀嘀打车更已取消“立减优惠”,取而代之的是“用嘀嘀添新衣”的广告或改送购物网站现金券。
那么,在后打车时代,滴滴打车这类打车软件还能走多远了我们通过对打车软件盈利模式的研究来探索这个问题。
关键词:空载率,支付方式,交易成本,后打车时代2.模型的假设①打车软件开拓的市场基本成熟,大公司的投资也不再,补贴也不再,利用生活服务来增强对用户的粘性。
2015年全国大学生数学建模竞赛B题“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。
为了缓解大城市打车难的问题,打车软件应运而生。
本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。
针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。
并采用Matlab 软件画出各个城市对应的供求关系图。
针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。
所以公司只在司机收入方面部分缓解了打车难这个问题。
针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。
面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。
本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。
“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。
为了缓解大城市打车难的问题,打车软件应运而生。
本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。
针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。
并采用Matlab软件画出各个城市对应的供求关系图。
针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。
所以公司只在司机收入方面部分缓解了打车难这个问题。
针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。
面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。
本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。
2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题“互联网+”时代的出租车资源配置出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
请你们搜集相关数据,建立数学模型研究如下问题:(1) 试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。
(2) 分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?(3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。
1选取几个打车平台的补贴方案去分析,比如:快的打车补贴变化2014年1月20日快的打车乘客车费返现10元,司机奖励10元2014年2月17日快的打车乘客返现11元,司机返5-11元[10]2014年2月18日快的打车乘客返现13元[11]2014年3月4日快的打车乘客返现10元/单,司机端补贴不变[6]2014年3月5日快的打车乘客补贴金额变为5元2014年3月22日快的打车乘客返现3—5元2014年5月17日软件乘客补贴“归零”2014年7月9日,将司机端补贴降为2元/单。
[12]2014年8月9日,滴滴、快的两大打车软件再出新规,全面取消司机端现金补贴。
滴滴打车1月10日,滴滴打车乘客车费立减10元、司机立奖10元2月17日,滴滴打车乘客返现10-15元,新司机首单立奖50元2月18日,滴滴打车乘客返现12至20元3月7日,滴滴打车乘客每单减免随机“6-15元”3月23日,滴滴打车乘客返现3-5元5月17日,打车软件乘客补贴“归零”7月9日,软件司机端补贴降为2元/单8月12日,滴滴打车取消对司机接单的常规补贴2分析传统出租车公司的补贴方案3最后一定要联系到是否对“缓解打车难”有帮助上,结论是:有一定帮助,但并未完全解决问题(),同时产生了新的问题。
“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。
本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。
对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日市南岗区出租车资源“供求匹配”程度。
通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。
同理,也得到了市不同区县、不同时间的供求匹配程度,最后作出市出租车“供求匹配”程度图。
对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。
对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。
关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。
而出租车作为交通工具中的重要组成部分,可以给人们的生活带来更便捷的服务。
所以无论是国还是国外,对于与出租车相关的问题都有较深入的研究。
作为居民日常出行的交通工具,出租车在人们生活中发挥着重要的作用。
然而由于时间、空间等因素,导致出租车行业面临着巨大的挑战,与此同时,也会出现“打车难”的现象。
但这也正促进了依托互联网建立的打车软件的发展以及多种出租车补贴方案的出现。
当今,“互联网+”发展迅速,所以研究互联网与出租车有关的问题是很有意义,本文要求搜集相关数据建立数学模型求解下列问题:问题一:建立合理的指标,分析在不同时间和空间条件下出租车资源的“供求匹配程度”。
问题二:分析各公司的出租车补贴方案是否对“缓解打车难”有所帮助?问题三:若要创建一个新的打车软件服务平台,应该设计什么样的补贴方案,并论证方案的合理性。
二模型假设假设1:城市中不出现大量的人口迁入与迁出。
假设2:城市中出租车的数量短期不会发生变化。
假设3:城区面积不发生大规模扩展。
假设4:城市道路发展程度不会发生大变化。
假设5:手机打车软件的使用者年龄主要集中在18~35周岁。
假设6:其它交通工具发展水平不变。
假设7:城市人均收入短期不变。
三符号说明1,24)1,24)四问题分析问题一的分析对于问题一,要想得到出租车资源的“供求匹配”程度,首要的问题是建立一个合理的评价指标。
通过对影响出租车与乘客供求关系的广义因素进行分析,每种大的前提下又细分为其它的影响因子,也就是构造了两个层次,再将最底层的影响因子利用ISM解释结构模型[2]进行归类。
利用层次分析-模糊综合评价模型对得到的归类进行分析和求解,得到综合评判集合,然后考虑结合一种出租车供需合理的标准,例如空载率这一指标对供求匹配程度进行分析。
最后结合实际着重研究不同时间和空间前提下城市出租车资源的“供求匹配程度”。
问题二的分析对于问题二,求各公司的补贴方案对“缓解打车难”是否有帮助,考虑到不同补贴方案归根到底是补贴金额的不同,因此考虑寻找一种补贴金额与打车难的关系,通过逆向思考,补贴金额可以等效看为出租车价格降低的金额,出租车价格变化与打车人数需求之间构成价格需求,于是可利用价格需求理论模型对此进行分析,但是单一的打车人数多少不足以表示打车是否困难,于是考虑增加一个空载率指标与打车人数结合表示打车是否困难,最后评判打车困难时,由于打车难这是一个不可量化指标,因此要想得出打车难是否有缓解只能先建立一个标准,然后将价格需求理论模型的求解结果带入该标准。
即可知道各公司的补贴整车对打车难是否有帮助。
问题三的分析由于问题三是设计补贴方案,而问题二里我们建立了价格需求理论模型,求解了各个公司不同补贴方案对打车难缓解的影响,于是我们在问题三过建立一个补贴金额与乘客满意程度的双优化模型来设计一个补贴方案,然后利用问题二的求解结果对设计方案进行论证。
五、模型的建立与求解5.1 问题一模型的建立与求解5.1.1 利用ISM模型对影响因素分组由于出租车资源供求匹配关系受到较多因素影响,其中很多因素又相互包含,必须全面考虑各个因素。
所以我们采用ISM模型对相应影响因素进行分组、归类,使问题简化,方便求解。
ISM模型是..J N Warfield于1973年为了分析复杂的社会经济问题而提出的解释结构模型,是静态的定性模型,其特点是能够将复杂的系统逐级分解成若干个子系统。
为了分析出租车资源的供求匹配程度,我们考虑影响出租车与乘客供求关系的一些主要因素如表1。
表1 出租车与乘客供求关系主要影响因素然后分析这些因素互相之间是否有关系,用0表示相互之间无影响,用1表示相互之间有影响,从而得到相互影响关系的邻接矩阵如下:由于此矩阵中影响因素较多,所以运用Matlab软件对邻接矩阵进行求解,程序见附录一,得1000000100101110110100101010110100101111110111110000100000000000010000000000001000000000000100100000000010100000000001000000000000100011K ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭可达矩阵可说明两个因素之间是否存在路径,并能清楚说明两因素之间影响程度。
定义集合()P I 为可达矩阵中要素I 一行中值为1的元素所在行元素集合,()H I 为可达矩阵中I 这列值为1对应的列元素集合,当()()()H I P I H I =时,I 即为该层元素,然后剔除矩阵中的W 元素,进行下一层元素计算,可以得到最终的分组:{}1168,,U A A A =; {}22310,,U A A A =; {}371112,,U A A A =; {}4459,,U A A A =。
通过分析每组所包含的因素,我们发现分组1U 里面所包影响因素可理解为经济水平对出租车供求关系的影响,2U 里面所包影响因素可以看作为不同空间对出租车供求关系的影响,3U 里面所包影响因素可以看作不同时间对出租车供求关系的影响,结果如表2。
时间因素3u是否是节假日5A 是否是高峰期4A其它4u乘客出行的紧急程度11A 旅游吸引能力12A 天气状况7A5.1.2 问题一模型的建立我们从出租车空载率角度考虑出租车资源的“供求匹配”程度问题,当出租车空载率过低时,说明打车的人少,出租车量小于乘客的需求;当空载率过高时,表明打车的人较多,出租车量大于乘客需求,出租车空载率能很好地反映出租车与人之间“供求匹配” 程度。
所以我们选取空载率这一指标作为模型最终评价因子分析,来分析不同时间和空间出租车资源的“供求匹配”程度问题。
我们利用()AHP —模糊综合评价方法建立模型,首先,利用()AHP 构造出一个层次分析模型,指标评价体系结构图如图1。
图1 层次分析结构图1)第一、二层权重集的确定第一层包括4个因素,即1234(,,,)U U U U U ,利用AHP 层次分析法比较几种指标间的关联度如图3。
表 3 第一层因素间关联度然后确定第一层指标权重,利用1~9标度法求解判断矩阵,构造第一层的评判矩阵Y 具体形式如下:11121314212223243132333441424344u u u u 11/41/41/4u u u u 4124=u u u u 41/2121/21/41/21u u u u Y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 其中:12u 表示1u 与2u 之间的关联度。
之后求解第一层的权重集W ={1W ,2W 3W ,4W }。
方法如下:先计算判断矩阵Y 每行元素的乘积i Q ,再对i Q 求五次方根,得到{}{}1234,,,0.232,0.821,1.736,0.427W W W W W ==归一化处理:利用公式 41/ii i i W W W ==∑对()1234,,,W W W W W =做归一化处理,得到1,234(,,)(0.100,0.462,0.305,0.133)W W W W W ==即为所求特征向量。
一致性检验:为了说明以上所求得特征向量是否能够合理的分配权重,需要进行一致性检验,方法如下:通过公式()4max 14iiYW W λ=∑求得判断矩阵的最大特征值,得到最大特征值max5.024λ=。
然后利用公式CI CR RI=和max1n CI n λ-=-,通过代入数据 1.12RI =,4n =,max 5.024λ= ,得到0.0350.1CR =<,这就表明评判矩阵Y 具有很好的一致性,所以()1234,,,W W W W W =中的各项均可以作为U 的权重系数。
同第一层权重的求解过程,对于第二层指标,由于第一层的每一个因素都包含()123,,ii i i u u u u =3个因素,于是得到第二层级的各项权重集:()()()()'1'2'3'4=0.2860.0810.5670.0860.1770.764=0.0760.6810.267=0.1820.0510.727W W W W =2)确定综合评判结果根据模糊综合评价法可知,综合判别公式12(,)m B W Y b b b =⋅=,其中41()(1,2)j i ij i b w y j m ===∑,将数据代入计算公式4'1()i i i B W W ==∑得到所研究问题的综合评判结果:()0.1160.3040.580B =。
3)综合评判矩阵B 的修正影响出租车供求匹配的具体因素有些有具体实际数据,各种数据的单位并不统一,不容易量化,而另外一些因素如:旅游吸引能力、乘客出行的紧急程度等影响因素是模糊的量。