2015年全国数学建模B题论文思路
- 格式:docx
- 大小:23.95 KB
- 文档页数:3
“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。
本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。
对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日市南岗区出租车资源“供求匹配”程度。
通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。
同理,也得到了市不同区县、不同时间的供求匹配程度,最后作出市出租车“供求匹配”程度图。
对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。
对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。
关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。
赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):B我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):评阅人备注送全国评阅统一编号(由赛区组委会填写):全国评阅随机编号(由全国组委会填写):(此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。
注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。
)“互联网+”时代的出租车资源配置摘要:“互联网+”就是利用互联网平台、信息通信技术,将互联网及包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态。
赛区评阅编号〔由赛区组委会填写〕:2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规如此》〔以下简称为“竞赛章程和参赛规如此〞,可从全国大学生数学建模竞赛下载〕。
我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规如此的,如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们X重承诺,严格遵守竞赛章程和参赛规如此,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规如此的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进展公开展示〔包括进展网上公示,在书籍、期刊和其他媒体进展正式或非正式发表等〕。
我们参赛选择的题号〔从A/B/C/D中选择一项填写〕:B我们的报名参赛队号〔12位数字全国统一编号〕:参赛学校〔完整的学校全称,不含院系名〕:参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期:年月日〔此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。
〕赛区评阅编号〔由赛区组委会填写〕:2015高教社杯全国大学生数学建模竞赛编号专用页送全国评阅统一编号〔由赛区组委会填写〕:全国评阅随机编号〔由全国组委会填写〕:〔此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。
注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。
〕“互联网+〞时代的出租车资源配置摘要:“互联网+〞就是利用互联网平台、信息通信技术,将互联网与包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为根底设施和实现工具的经济开展新形态。
基于供求匹配率的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
为分析不同时空出租车资源的供求匹配程度,引入出租车资源供求匹配率这一指标,指标的定义为城市中实际运行的出租车辆数与居民出行需要的出租车辆数之比,反映城市中实际运行的出租车辆数与居民出行需要的出租车辆数之间的差异。
计算得出2013年出租车供求匹配率为0.7766,表示供不应求。
居民出行需要的出租车辆数与居民人均日出行次数、城市总人口数量、居民出行选择乘坐出租车的比例有关,也与每辆出租车日均载客次数、每单载客人数和车辆满载率有关。
对于居民人均日出行次数,利用十五个国大中城市的数据,将十二个城市经济指标聚类分析选出每类指标中典型的经济指标,建立居民人均日出行次数与这些典型经济指标间的多元线性回归方程,而与居民出行需要的出租车辆数相关的其他指标可查阅文献或年鉴获得。
分析市每天6:00-8:30,11:00-12:30,13:30-14:30,17:00-18:30四个时间段得供求匹配率分别为0.4111,0.5678,0.6062,0.5631,结果显示供不应求。
得到、、、、、、、八座城市的出租车资源供求匹配率分别为1.0936、0.8827、0.9430、0.7040、0.7049、0.7666、0.6583、0.5252,表明只有的出租车资源是供大于求,而其余七座城市为供小于求。
为了分析各公司的出租车补贴方案对缓解打车难是否有帮助,定性分析出租车日均载客次数、出租车满载率随打车软件对出租车司机每单补贴金额的变化趋势,分别建立阻滞增长模型,进而分析打车软件对出租车司机每单补贴金额的变化对所建指标的影响。
得到的结论为:对于使用打车软件的乘客来说,出租车补贴方案能够缓解打车难的问题;而对于不使用打车软件的乘客来说,出租车补贴方案则不能缓解打车难的问题。
B题“互联网+”时代的出租车资源配置出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
请你们搜集相关数据,建立数学模型研究如下问题:(1)试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。
指标:里程利用率,车辆满载率,车辆拥有量(万人)等,从这些指标去按以下步骤收集数据并分析1分别收集一线(比如北上广),二线(比如西安),三线(比如拉萨)城市各一个的出租车数据来分析,这样就能代表全国了。
这就是第一问中的“空”2主要分析各个城市早(7:00——8:30)中(11:30——2:30)晚(17:30——18:30)上班高峰和平时时段的打车的供求情况这就是第一问中的“时”3最后总结哈供求匹配程度(2)分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?1选取几个打车平台的补贴方案去分析,比如:快的打车补贴变化2014年1月20日快的打车乘客车费返现10元,司机奖励10元2014年2月17日快的打车乘客返现11元,司机返5-11元[10]2014年2月18日快的打车乘客返现13元[11]2014年3月4日快的打车乘客返现10元/单,司机端补贴不变[6]2014年3月5日快的打车乘客补贴金额变为5元2014年3月22日快的打车乘客返现3—5元2014年5月17日软件乘客补贴“归零”2014年7月9日,将司机端补贴降为2元/单。
[12]2014年8月9日,滴滴、快的两大打车软件再出新规,全面取消司机端现金补贴。
滴滴打车1月10日,滴滴打车乘客车费立减10元、司机立奖10元2月17日,滴滴打车乘客返现10-15元,新司机首单立奖50元2月18日,滴滴打车乘客返现12至20元3月7日,滴滴打车乘客每单减免随机“6-15元”3月23日,滴滴打车乘客返现3-5元5月17日,打车软件乘客补贴“归零”7月9日,软件司机端补贴降为2元/单8月12日,滴滴打车取消对司机接单的常规补贴2分析传统出租车公司的补贴方案3最后一定要联系到是否对“缓解打车难”有帮助上,结论是:有一定帮助,但并未完全解决问题(),同时产生了新的问题。
互联网时代的出租车资源配置摘要出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着互联网时代的到来,很多家出租车公司建立了自己的打车软件服务平台,打车软件服务平台也走进了人们的生活,增加了交易机会,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
我们通过建立合适的数学模型来分析如今的补贴方案是否能缓解打车难的问题。
针对问题一,为了将“供求匹配程度”这一抽象的概念进行定量研究,我们试图建立出租车万人拥有量、空驶率、乘客等车时间、里程利用率等四个指标结合经济学的角度来进行问题的分析,并基于层次分析模型进行模糊综合评价来分析不同时空出租车资源的“供求匹配”程度。
针对问题二,要求我们分析各公司的出租车补贴方案是否对缓解打车难问题有帮助,我们利用数学期望假设检验的方法,主要通过对使用打车软件前后乘客平均等车时间和出租车司机驾车空驶率两个因素的分析,验证出租车补贴方案是否对缓解打车难问题,并验证了这些打车软件服务平台和出台的相应的出租车及乘客补贴政策提高了打车双方的积极性,对缓解“打车难”的问题起到了一定的帮助。
针对问题三,建立一个新的打车软件服务平台首先应该考虑在缓解“打车难“这个难题基础上,增加其核心竞争力,再充分汲取现有打车软件服务平台的优点,寻找背后合作伙伴,在初期实施一些大型的优惠补贴政策,吸引客户,并抢占市场份额。
这就需要我们设计出自己的补贴方案,与在原来的补贴方案下相关数据进行比较,分析原来的补贴数目,做出相应的调整。
并进行试验,从而得出其合理性。
关键词:层次分析法,模糊综合评价法,经济学,数学期望假设检验一、问题重述随着人民生活水平的日益提高,出行乘坐出租汽车的人越来越多。
但是,在许多大城市中,打车已经变得越来越难,特别是在上下班高峰期和恶劣天气时更是“一车难求”。
出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
精心整理“互联网+”时代的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
软件公司三方的满意度,利用熵值法确定这三方各自满意度的权重,将三方满意度加权之和作为综合满意度,进而以综合满意度为目标函数,以打车软件对出租车司机每单补贴金额为控制变量,以补贴金额设置的范围为约束条件建立优化模型。
遍历所有可能的方案得到最优补贴方案为对出租车司机每单补贴9元,综合满意度为0.5710。
关键词:聚类分析;回归分析;灰色预测;阻滞增长模型;熵值法;最优化一、问题重述随着经济的发展,近年来,人们对出行的要求不断提高,城市出租车以其方便、快捷、舒适和私密性的特点成为越来越多人的出行选择。
但是,国内各大城市交通问题日趋严重,“打车难”也是人们关注的一个社会热点问题。
数据显示,包括上海、杭州等众多大城市,出租车非高峰期的空驶率始终在30%上下徘徊,而高峰期却打不到车。
这与众多市民反映的打车难背后所隐藏的强烈需求看似形成了一个矛盾。
究其原因,最主要的莫过于司机与乘客需求信息不对称,缺乏及时沟通交流的平台。
通过查阅文献可以确定居民出行选择出租车作为出行方式的比例从而,计算得出城市的出租车运输量的需求量。
然后根据供需平衡法预测出城市出租车需求量。
将城市实际出租车数量与城市出租车需求数量作比,得到衡量出租车资源的供求匹配程度的指标即供求匹配率。
对未来城市的出租需求量进行灰色关联预测,得到未来城市的出租需求量,通过计算不同城市的出租车需求量,进行不同时空的出租车资源供求匹配的分析。
对于各公司的出租车补贴方案是否对“缓解打车难”有帮助问题,由于难以得到各公司不同时间的补贴方案对居民打车难度的实际影响效果数据,我们从公司对每单的补贴金额入手,分析每单补贴金额范围为0~15元,认为补贴金额再高对公司利益有较大损失。
“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。
为了缓解大城市打车难的问题,打车软件应运而生。
本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。
针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。
并采用Matlab软件画出各个城市对应的供求关系图。
针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。
所以公司只在司机收入方面部分缓解了打车难这个问题。
针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。
面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。
本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。
B题“互联网+”时代的出租车资源配置
出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
请你们搜集相关数据,建立数学模型研究如下问题:
(1)试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。
指标:里程利用率,车辆满载率,车辆拥有量(万人)等,从这些指标去按以下步骤收集数据并分析
1分别收集一线(比如北上广),二线(比如西安),三线(比如拉萨)城市各一个的出租车数据来分析,这样就能代表全国了。
这就是第一问中的“空”
2主要分析各个城市早(7:00——8:30)
中(11:30——2:30)
晚(17:30——18:30)上班高峰
和平时时段的打车的供求情况这就是第一问中的“时”
3最后总结哈供求匹配程度
(2)分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?
1选取几个打车平台的补贴方案去分析,比如:
快的打车补贴变化
2014年1月20日快的打车乘客车费返现10元,司机奖励10元
2014年2月17日快的打车乘客返现11元,司机返5-11元[10]
2014年2月18日快的打车乘客返现13元[11]
2014年3月4日快的打车乘客返现10元/单,司机端补贴不变[6]
2014年3月5日快的打车乘客补贴金额变为5元
2014年3月22日快的打车乘客返现3—5元
2014年5月17日软件乘客补贴“归零”
2014年7月9日,将司机端补贴降为2元/单。
[12]
2014年8月9日,滴滴、快的两大打车软件再出新规,全面取消司机端现金补贴。
滴滴打车
1月10日,滴滴打车乘客车费立减10元、司机立奖10元
2月17日,滴滴打车乘客返现10-15元,新司机首单立奖50元
2月18日,滴滴打车乘客返现12至20元
3月7日,滴滴打车乘客每单减免随机“6-15元”
3月23日,滴滴打车乘客返现3-5元
5月17日,打车软件乘客补贴“归零”
7月9日,软件司机端补贴降为2元/单
8月12日,滴滴打车取消对司机接单的常规补贴
2分析传统出租车公司的补贴方案
3最后一定要联系到是否对“缓解打车难”有帮助上,结论是:有一定帮助,但并未完全解决问题(),同时产生了新的问题。
注意要用数据和案例论证,不能自己在那空口说。
这样就为下
一问铺垫好了。
(3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。
创建新平台肯定是让你解决现有方案的不足,所以针对第二问
中的结论,在你的新方案中论述怎样解决那些问题,形成新方
案(可以下载那些打车软件体验哈,实在想不出新方案,就把
人家各个打车平台好的地方组合起来)。