计算电磁学-第5章-时域有限差分法3
- 格式:ppt
- 大小:1.60 MB
- 文档页数:60
时域有限差分法(FDTD算法)的基本原理及仿真时域有限差分法(FDTD 算法)时域有限差分法是1966年K.S.Yee 发表在AP 上的一篇论文建立起来的,后被称为Yee 网格空间离散方式。
这种方法通过将Maxwell 旋度方程转化为有限差分式而直接在时域求解, 通过建立时间离散的递进序列, 在相互交织的网格空间中交替计算电场和磁场。
FDTD 算法的基本思想是把带时间变量的Maxwell 旋度方程转化为差分形式,模拟出电子脉冲和理想导体作用的时域响应。
需要考虑的三点是差分格式、解的稳定性、吸收边界条件。
有限差分通常采用的步骤是:采用一定的网格划分方式离散化场域;对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式,得到差分方程组;结合选定的代数方程组的解法,编制程序,求边值问题的数值解。
1.FDTD 的基本原理FDTD 方法由Maxwell 旋度方程的微分形式出发,利用二阶精度的中心差分近似,直接将微分运算转换为差分运算,这样达到了在一定体积内和一段时间上对连续电磁场数据的抽样压缩。
Maxwell 方程的旋度方程组为:E E H σε+∂∂=⨯∇t H HE m tσμ-∂∂-=⨯∇ (1) 在直角坐标系中,(1)式可化为如下六个标量方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+∂∂=∂∂-∂∂+∂∂=∂∂-∂∂+∂∂=∂∂-∂∂z z x y y y z x x x yz E t E y H x H E t E x H z H E t E z H y H σεσεσε,⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-∂∂-=∂∂-∂∂-∂∂-=∂∂-∂∂-∂∂-=∂∂-∂∂z m zx y y m y z x x m x y z H t H y E x E H t H x E z E H t H z E y E σμσμσμ (2)上面的六个偏微分方程是FDTD 算法的基础。
Yee 首先在空间上建立矩形差分网格,在时刻t n ∆时刻,F(x,y,z)可以写成),,(),,,(),,,(k j i F t n z k y j x i F t z y x F n =∆∆∆∆= (3)用中心差分取二阶精度: 对空间离散:()[]2),,21(),,21(),,,(x O xk j i F k j i F x t z y x F n n xi x ∆+∆--+≈∂∂∆= ()[]2),21,(),21,(),,,(y O yk j i F k j i F y t z y x F n n yj y ∆+∆--+≈∂∂∆= ()[]2)21,,()21,,(),,,(z O zk j i F k j i F z t z y x F n n zk z ∆+∆--+≈∂∂∆=对时间离散:()[]22121),,(),,(),,,(t O tk j i F k j i F t t z y x F n n tn t ∆+∆-≈∂∂-+∆= (4) Yee 把空间任一网格上的E 和H 的六个分量,如下图放置:oyxzEyHzExEzHxEyEyEzEx HyEzEx图1 Yee 氏网格及其电磁场分量分布在FDTD 中,空间上连续分布的电磁场物理量离散的空间排布如图所示。
时域有限差分法介绍
时域有限差分法(Finite Difference Time Domain, FDTD)是
一种数值求解电磁波在时域中传播的方法。
它通过将空间和时间连续
性方程离散化,将偏微分方程转化为差分方程,并使用差分法来近似
求解波动方程。
时域有限差分法可以用于研究不同频率和波长的电磁波在各向同性、各向异性以及具有非线性、色散等特性的介质中的传播和相互作用。
它广泛应用于光学和电磁学领域中,可用于模拟光纤、微波器件、天线、光子晶体、超材料等的性能。
该方法的基本思想是将空间划分为离散的单元,称为网格,其中
包含了电场、磁场、电流和电荷等物理量。
通过对空间坐标和时间进
行离散化,可以将连续的偏微分方程转化为差分方程。
具体地,通过
泰勒展开将时域和空域的导数转化为有限差分的形式。
在时域有限差分法中,电场和磁场被分别定义在正方形的网格节
点上。
通过应用麦克斯韦方程组的差分形式,可以得到给定时间步长
的下一个时间步的电场和磁场值。
这些值可以根据初始条件和边界条
件进行更新。
时域有限差分法具有较好的稳定性和精度,可以模拟各种复杂的
电磁现象。
然而,它在处理边界条件和非均匀介质等问题时存在一些
困难。
因此,研究者们提出了各种改进的时域有限差分法,以提高其
适用性和效率。
计算电磁学计算电磁学是指对一定物质和环境中的电磁场相互作用的建模过程,通常包括麦克斯韦方程计算上的有效近似。
计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。
计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。
1.基于积分方程的方法1.1 离散偶极子近似(discrete dipole approximation,DDA) DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。
DDA用有限阵列的可极化点来近似连续形式的物体。
每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。
因此,DDA 有时也被认为是耦合偶极子近似。
这种线性方程的计算一般采用共轭梯度迭代法。
由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。
1.2 矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM )MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。
自从上世纪八十年代以来,该方法越来越流行。
由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体积)问题的有效办法。
从概念上讲,它们在建模后的表面建立网格。
然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。
原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。
相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。
即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。
BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。
为了能使用BEM,需要对问题有很多限制,使用上不方便。
计算电磁学摘要:作为一门交叉学科,计算电磁学结合了计算机技术、数值计算学和电磁学等相关学科的知识,正经历着日新月异的发展。
各种各样的计算方法层出不穷,由此诞生的各种商业DEA软件如HFSS、CST、FECO、ADS等在工程领域中得到了广泛的应用,为解决各种复杂的工程问题提供了有力的帮助,极大地缩短了研究周期,降低了成本和提高了稳定性。
计算电磁学是指对一定物质和环境中的电磁场相互作用的建模过程,通常包括麦克斯韦方程计算上的有效近似。
计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。
计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。
关键词:计算电磁学,麦克斯韦方程,雷达散射截面Computational ElectromagneticsAbstract: As an interdisciplinary, computational electromagnetics combines the knowledge of computer technology, numerical calculus and electromagnetics and other related disciplines, is experiencing the ever-changing development. A variety of computing methods emerge in an endless stream, the birth of a variety of commercial DEA software such as HFSS, CST, FECO, ADS, etc. in the field of engineering has been widely used to solve a variety of complex engineering problems provide a strong help , Greatly shortening the research cycle, reducing costs and improving stability. Computational electromagnetism is the modeling process for the interaction of electromagnetic fields in a given substance and environment, usually including the effective approximation of the Maxwell equation. Computational electromagnetism is used to calculate antenna performance, electromagnetic compatibility, radar cross section and non-free space radio propagation problems. The main ideas of computational electromagnetics are based on the integral equation method, the method based on differential (differential) equation, and other simulation methods.Key word: computational electromagnetics, Maxwell equation, radar cross section第一章引言1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。
电磁波时域有限差分方法电磁波时域有限差分方法是一种在计算电磁波传播过程中广泛使用的数值模拟方法。
它通过将电磁场的时域偏导数转化为差分形式进行离散计算,从而得到电磁场的时域响应。
这种方法在电磁波仿真、电磁辐射、雷达散射以及通信系统设计等领域具有重要的应用价值。
时域有限差分方法的理论基础是电磁波的麦克斯韦方程组。
通过将麦克斯韦方程组进行离散化,将时域偏导数转化为差分形式,并使用合适的差分格式来近似电场和磁场的时域分布。
通过迭代计算离散化后的麦克斯韦方程组,可以得到电磁场在时域上的演化过程。
具体来说,时域有限差分方法的基本步骤如下:1. 网格划分:首先对仿真区域进行网格划分,将空间离散为有限的小单元。
典型的网格划分包括一维、二维和三维的情况。
2. 差分格式选择:根据实际问题选择合适的差分格式,如中心差分格式、向前差分格式或向后差分格式等。
差分格式的选择会直接影响计算结果的准确性和稳定性。
3. 时间步长确定:为了保证计算结果的稳定性,需要根据空间离散步长和电磁波传播速度来确定合适的时间步长。
时间步长的选择需要满足稳定性条件。
4. 初始条件和边界条件设定:在仿真开始前,需要设定初始条件和边界条件。
初始条件指定电磁场在仿真区域内的初始分布,而边界条件则决定了电磁场与仿真区域边界的相互作用关系。
5. 迭代求解:通过迭代计算离散化的麦克斯韦方程组,可以得到电场和磁场在时域上的演化过程。
每一次迭代都涉及更新电场和磁场的数值。
时域有限差分方法相比其他电磁波计算方法具有一定的优势。
首先,它能够模拟电磁场的时域响应,对于短脉冲信号或非稳态过程的仿真非常有用。
其次,它在空域和频域上的计算误差相对较小,并且可以处理各种不规则形状的仿真区域。
此外,时域有限差分方法还可以结合其他方法,如有限元方法和边界元方法,进行更精确的仿真计算。
虽然时域有限差分方法在电磁波仿真中取得了显著的成果,但它也存在一些局限性。
首先,它的计算速度相对较慢,特别是在三维仿真中。
时域有限差分方法
时域有限差分方法(FDTD)是一种数值求解电磁场问题的方法,适用于计算复杂的电磁现象。
该方法将电磁场方程离散化为差分形式,然后通过不断迭代求解差分方程,得到电磁场在时域上的时变分布。
具体来说,FDTD方法将空间和时间分割成网格,然后在每个网格点上估计电磁场的值。
通过使用差分方程,可以将电场和磁场的时变分布递推到下一个时间步。
一般而言,FDTD方法采用中心差分形式的差分方程,以提高数值解的稳定性和精度。
FDTD方法的主要优点是适用于计算非线性、吸收、散射等复杂电磁现象。
由于差分形式的方程可以直接计算,相比其他数值方法(如有限元方法和边界元方法),FDTD方法具有较高的计算速度。
然而,FDTD方法也存在一些限制。
由于需要将空间和时间分割为网格,因此对于复杂几何形状和大尺寸问题,需要较大的计算资源和内存。
此外,FDTD方法对吸收边界条件的处理也比较复杂,需要采用合适的数值技巧来避免误差累积。
总的来说,FDTD方法是一种广泛应用于电磁场问题求解的数值方法,具有较高的计算速度和适用性。
在实际应用中,可以结合其他方法或技术对其进行改进和优化,以适应各种特定问题的求解需求。
时域有限差分方法
《时域有限差分方法》
嘿,你知道吗,有一种超厉害的方法叫时域有限差分方法!这可真是个神奇的玩意儿。
想象一下,我们要研究那些看不见摸不着的电磁波啊之类的东西。
以前可麻烦了,但有了时域有限差分方法,就好像打开了一扇新的大门。
它是怎么工作的呢?简单来说,就是把我们要研究的区域划分成很多很多小格子,就像一个大拼图一样。
然后呢,通过计算这些小格子之间的变化,来了解整个区域的情况。
这个方法的好处可多啦!它能处理各种复杂的情况,不管是奇形怪状的物体,还是变化多端的环境。
而且,它很直观,让我们能清楚地看到电磁波是怎么传播、怎么变化的。
在实际应用中,时域有限差分方法可太有用了。
比如在通信领域,它能帮助我们设计更好的天线,让信号传输得更远更稳定。
在雷达系统中,它能让我们更准确地探测目标。
我觉得时域有限差分方法真的是一项非常了不起的技术,给我们探索和理解各种物理现象带来了巨大的帮助。
计算电磁学(1) 时域方法与谱域方法电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。
时域方法对Maxwell方程按时间步进后求解有关场量。
最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。
这种方法通常适用于求解在外界激励下场的瞬态变化过程。
若使用脉冲激励源,一次求解可以得到一个很宽频带范围内的响应。
时域方法具有可靠的精度,更快的计算速度,并能够真实地反应电磁现象的本质,特别是在诸如短脉冲雷达目标识别、时域测量、宽带无线电通讯等研究领域更是具有不可估量的作用。
频域方法是基于时谐微分、积分方程,通过对N个均匀频率采样值的傅立叶逆变换得到所需的脉冲响应,即研究时谐(Time Harmonic)激励条件下经过无限长时间后的稳态场分布的情况,使用这种方法,每次计算只能求得一个频率点上的响应。
过去这种方法被大量使用,多半是因为信号、雷达一般工作在窄带。
当要获取复杂结构时域超宽带响应时,如果采用频域方法,则需要在很大带宽内的不同频率点上的进行多次计算,然后利用傅立叶变换来获得时域响应数据,计算量较大;如果直接采用时域方法,则可以一次性获得时域超宽带响应数据,大大提高计算效率。
特别是时域方法还能直接处理非线性媒质和时变媒质问题,具有很大的优越性。
时域方法使电磁场的理论与计算从处理稳态问题发展到能够处理瞬态问题,使人们处理电磁现象的范围得到了极大的扩展。
频域方法可以分成基于射线的方法(Ray-based)和基于电流的方法(Current-based)。
前者包括几何光学法(GO)、几何绕射理论(GTD)和一致性绕射理论(UTD)等等。
后者主要包括矩量法(MoM)和物理光学法(PO)等等。
基于射线的方法通常用光的传播方式来近似电磁波的行为,考虑射向平面后的反射、经过边缘、尖劈和曲面后的绕射。