计量经济学中的各种检验
- 格式:ppt
- 大小:377.50 KB
- 文档页数:68
所有计量经济学检验方法
1、回归分析:回归分析是用来确定两个变量之间相关关系的一种统计方法,它能够推断出一个变量对另一个变量的影响程度。
常用的回归检验包括偏直斜率检验、R平方检验、Durbin-Watson检验、自相关检验、Box-Cox检验等。
2、主成分分析:主成分分析(PCA)是一种统计分析方法,用于消除随机变量之间的相关性,从而简化数据分析过程。
常用的方法有二元主成分分析(BPCA)、多元主成分分析(MPCA)
3、因子分析:因子分析是一种统计学方法,用于确定从多个离散观测变量中提取的隐含变量。
常用的因子分析检验包括KMO检验、Bartlett 统计量检验、条件双侧门限统计量检验等。
4、多元分析:多元分析是一种统计学方法,用于探索随机变量之间的关系,常用的多元分析检验包括多元弹性网络(MANOVA)、多元回归(MR)以及结构方程模型(SEM)。
5、聚类分析:聚类分析是一种用于探索研究数据中的结构和特征的统计学方法。
它主要是将数据集分组,以便对数据集中的每组信息单独进行分析。
常用的聚类分析检验有K均值聚类、层次聚类、嵌套聚类等。
6、特征选择:特征选择是一种数据分析技术,用于从大量可能的特征中,选择有效的特征变量。
简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。
对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。
2、统计推断检验。
3、计量经济学检验。
4、模型预测检验。
三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。
(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。
(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。
(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。
四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。
为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。
例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。
称为最小二乘法则。
为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。
可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。
所有计量经济学检验方法(全)计量经济学所有检验方法一、拟合优度检验 可决系数TSSRSSTSS ESS R -==12 TSS 为总离差平方和,ESS为回归平方和,RSS 为残差平方和该统计量用来测量样本回归线对样本观测值的拟合优度。
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数)1/()1/(12----=n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
二、方程的显著性检验(F 检验)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1:βj 不全为0 统计量)1/(/--=k n RSS kESS F 服从自由度为(k , n-k-1)的F分布,给定显著性水平α,可得到临界值Fα(k,n-k-1),由样本求出统计量F的数值,通过F>Fα(k,n-k-1)或F≤Fα(k,n-k-1)来拒绝或接受原假设H,以判定原方程总体上的线性关系是否显著成立。
三、变量的显著性检验(t检验)对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
原假设与备择假设:H0:βi=0 (i=1,2…k);H1:βi≠0给定显著性水平α,可得到临界值tα/2(n-k-1),由样本求出统计量t的数值,通过|t|> tα/2(n-k-1) 或|t|≤tα/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。
四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。
统计量)1(~1ˆˆˆ----'--=k n t k n c S t iiii iiie e βββββ在(1-α)的置信水平下βi 的置信区间是( , ) ββααββi i t s t s ii-⨯+⨯22,其中,t α/2为显著性水平为α、自由度为n-k-1的临界值。
计量经济学考试重点整理计量经济学考试重点整理第一章:计量经济学是指用数学方法探讨经济学的一门学科,由统计学、经济理论和数学三者结合而成。
它不同于经济统计学和一般经济理论,也不是数学应用于经济学的同义语。
三者结合起来,才能构成计量经济学的力量。
理论模型的设计包含三个主要部分:选择变量、确定变量之间的数学关系和拟定模型中待估计参数的数值范围。
常用的样本数据有时间序列、截面和虚拟变量数据。
样本数据的质量应具备完整性、准确性、可比性和一致性。
模型的检验包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
其中,计量经济学检验包括异方差性检验、序列相关性检验和共线性检验。
计量经济学模型的成功要素包括理论、方法和数据。
应用方面,计量经济学模型可用于结构分析、经济预测、政策评价和理论检验与发展。
其中,结构分析主要采用弹性分析、乘数分析和比较静力分析等方法。
经济预测是计量经济学模型的一个主要应用领域,它是从用于经济预测,特别是短期预测而发展起来的。
对于非稳定发展的经济过程和缺乏规范行为理论的经济活动,计量经济学模型预测功能可能失效。
政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
计量经济学模型可以起到“经济政策实验室”的作用,将经济目标作为被解释变量,经济政策作为解释变量,评价各种不同政策对目标的影响。
最后,实践是检验真理的唯一标准,计量经济学模型的理论方法需要不断发展以适应预测的需要。
任何经济学理论只有在成功解释过去的情况下才能被人们所接受。
计量经济学模型提供了一种检验经济理论的好方法,通过对理论假设的检验可以发现和发展理论。
相关分析主要研究随机变量间的相关形式及相关程度,适用于所有统计关系。
但相关分析有其局限性,不能说明变量间的具体相关关系形式,也不能从一个变量推测另一个变量的具体变化。
回归分析则是研究一个变量关于另一个或几个变量的具体依赖关系的计算方法和理论,目的是根据已知的解释变量的数值去估计被解释变量的平均值。
计量经济学知识点总结————————————————————————————————作者:————————————————————————————————日期:ﻩ绪论计量经济学:根据理论和观测的事实,运用合适的推理方法使之联系起来同时推导,对实际经济现象进行的数量分析。
计量经济学(定量分析)是经济学(定性分析)、统计学和数学(定量分析)的结合。
目的:把实际经验的内容纳入经济理论,确定变现各种经济关系的经济参数,从而验证经济理论,预测经济发展的趋势,为制定经济策略提供依据。
类型:理论计量经济学和应用计量经济学计量经济学的研究步骤:(一)模型设定:要有科学的理论依据选择适当的数学形式方程中的变量要具有可观测性(二)估计参数:参数不能直接观测而且是未知的(三)模型检验:经济意义的检验、统计推断检验、计量经济学检验、模型预测检验(四)模型应用:经济分析、经济预测、政策评价和检验、发展经济理论计量经济模型:计量经济模型是为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。
计量经济研究中应用的数据包括:①时间序列②数据截面③数据面板④数据虚拟变量数据第二章简单线性回归模型:只有一个解释变量的线性回归模型相关系数:两个变量之间线性相关程度可以用简单线性相关系数去度量总体相关系数:对于研究的总体,两个相互关联的变量得到相关系数。
总体相关系数Var方差Cov协议方差∑(X i−X̅)(Y I−Y̅)r XY=√∑(X−X̅)2∑(Y i−Y̅)2i总体回归函数:将总体被解释函数Y的条件期望表现为解释变量X的函数总体E(Y|X i)=β1+β2X i个体Y i=β1+β2X i+μi随机扰动项μ引入随机扰动项的原因?①作为未知影响因素的代表②作为无法取得数据的已知因素的代表③作为众多细小因素的综合代表④模型的设定误差⑤变量的观测误差⑥经济现象的内在随机性。
简单线性回归的基本假定?(1)零均值假定时,即在给定解释变量Xi得到条件下,随机扰动项Ui的条件期望或条件均值为零。
所有计量经济学检验方法1. OLS回归分析:OLS(Ordinary Least Squares)是一种常用的回归分析方法,它通过最小二乘估计来计算自变量对因变量的影响。
OLS回归分析可用于检验两个或多个变量之间的关系。
2.t检验:t检验用于检验样本均值与总体均值之间的差异是否显著。
在计量经济学中,常常用t检验来检测回归系数的显著性,即判断自变量对因变量的影响是否显著。
3.F检验:F检验用于检验回归模型的整体显著性。
通过F检验可以判断回归模型中自变量的组合对因变量的影响是否显著。
4.残差分析:残差分析用于检验回归模型的拟合优度。
它通过对回归模型的残差进行统计分析,判断残差是否符合正态分布、是否存在异方差等,并据此评估回归模型的合理性。
5.雅克-贝拉检验:雅克-贝拉检验用于检验时间序列数据的自相关性。
自相关性是指时间序列数据中的随机误差项之间存在相关性,为了使回归模型的估计结果有效,需要排除自相关性的影响。
6. ARIMA模型:ARIMA(Autoregressive Integrated Moving Average)模型是一种常用的时间序列分析模型,用于分析和预测时间序列数据。
ARIMA模型可以用于检验时间序列数据的平稳性和趋势。
7. Granger因果检验:Granger因果检验用于检验两个时间序列变量之间的因果关系。
通过检验一个变量的过去值对另一个变量的当前值的预测能力,可以判断两个变量之间是否存在因果关系。
8.卡方检验:卡方检验用于检验两个或多个分类变量之间是否存在显著差异。
在计量经济学中,卡方检验常用于检验变量之间的相关性和拟合优度。
9.随机效应模型和固定效应模型:随机效应模型和固定效应模型是面板数据分析中常用的方法。
它们通过考虑个体特征对经济现象的影响,帮助研究人员解决面板数据中存在的个体特征和时间特征之间的内生性问题。
10.引导变量法:引导变量法用于解决因果关系中的内生性问题。
通过引入其他变量作为工具变量,可以将内生性引起的估计偏误消除或减小。
1. 模型的检验包括哪几个方面?具体含义是什么?模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合; ②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
2. 计量经济学研究的基本步骤是什么?包括四个步骤:理论模型的设定、模型参数的估计、模型的检验、模型的应用。
3. 总体回归函数和样本回归函数之间有哪些区别与联系?样本回归函数是总体回归函数的一个近似。
总体回归函数具有理论上的意义,但其具体的参数不可能真正知道,只能通过样本估计。
样本回归函数就是总体回归函数的参数用其估计值替代之后的形式,即01ˆˆββ,为01ββ,的估计值。
4. 为什么用可决系数2R 评价拟合优度,而不是用残差平方和作为评价标准? 可决系数R 2=ESS/TSS=1-RSS/TSS ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣,该值越大说明拟合的越好;而残差平方和与样本容量关系密切,当样本容量比较小时,残差平方和的值也比较小,尤其是不同样本得到的残差平方和是不能做比较的。
此外,作为检验统计量的一般应是相对量而不能用绝对量,因而不能使用残差平方和判断模型的拟合优度。
5. 根据最小二乘原理,所估计的模型已经使得拟合误差达到最小,为什么还要讨论模型的拟合优度问题?普通最小二乘法所保证的最好拟合是同一个问题内部的比较,即使用给出的样本数据满足残差的平方和最小;拟合优度检验结果所表示的优劣可以对不同的问题进行比较,即可以辨别不同的样本回归结果谁好谁坏。
作业1我们有1978-2007年我国财政收入,国内生产总值,财政支出和商品零售价格指数的年度数据。
请用Eview 进展回归分析。
(1) 根据回归结果分析模型的经济意义〔包含模型的显著性,拟合优度,系数的显著性,系数的经济意义〕建立模型,做OLS 估计,得结果图一,列表如下:43283175.57898859.0003271.0558.6399X X X Y ++--=∧)0636.20)(065848.0)(012559.0)(836.2132(SE )882456.2)(65061.13)(260476.0-)(000492.3-(t =997046.02=R 996705.02=R 845.2924=F模型整体显著性较高〔F 检验十分显著〕,可决系数2R 和调整的可决系数较大,即样本回归方程对样本观测值拟合较好。
t 检验显示2X 的系数不显著〔p 值>0.05,不能拒绝β=0的原假设〕,3X 和4X 的系数显著〔p 值<0.05,拒绝β=0的原假设〕。
从模型的经济意义来看,财政支出、商品零售价格指数与财政收入成正相关,国内生产总值与财政收入成负相关,不符合客观经济规律,可能与模型变量的选取有关。
考虑对模型进展对数变换,结果为图二。
432ln 128427.1ln 631090.0ln 448496.0946444.6ln X X X Y +++-=∧)610249.0)(160929.0)(141418.0)(853146.2(SE)849127.1)(921549.3)(171412.3)(434662.2(t -=987673.02=R 986251.02=R 3969.694=F对数变换后模型整体显著性较高〔F 检验十分显著,p 值=0.00<<0.05〕,可决系数2R 和调整的可决系数略有下降,模型可解释98.63%的因变量变化。
t 检验显示4ln X 的系数不显著〔p 值=0.0758>0.05,不能拒绝β=0的原假设〕,2ln X 和3ln X 的系数显著〔p 值<0.05,拒绝β=0的原假设〕。
计量经济学邹氏检验步骤计量经济学中的邹氏检验啊,这可是个相当重要的东西呢!就好像是打开计量经济学奥秘之门的一把钥匙。
咱先来说说第一步,就像是踏上一段奇妙旅程的开始。
你得准备好各种数据,就像战士出征前要整理好自己的装备一样。
这些数据可不能马虎,得准确无误,不然就像在迷雾中走路,容易迷失方向。
然后呢,进入第二步啦。
这一步就好像是在搭建一个精巧的模型,每一块积木都要放对位置。
你要根据数据进行各种计算和分析,就如同一个细心的工匠在雕琢一件艺术品。
接下来到了第三步,这时候就像是在黑暗中突然看到了一丝光亮。
你开始对前面的结果进行检验和判断,看看是不是符合预期,是不是真的找到了那条正确的路径。
第四步呢,就好像是给整个过程盖上一个印章。
确认无误后,你可以得出结论啦,就如同探险家终于找到了宝藏的所在。
你想想啊,如果没有这一步步严谨的邹氏检验,那我们对经济现象的理解不就像在雾里看花,模模糊糊的嘛!它能让我们更清楚地看到经济变量之间的关系,就像给我们配上了一副清晰的眼镜。
而且啊,这邹氏检验就如同一个可靠的朋友,在你迷茫的时候给你指引方向。
它帮助我们避免走入误区,做出更准确的判断和决策。
你可别小瞧了这些步骤,每一步都有它的意义和价值。
就好像是一场精彩的演出,每个演员都有自己的角色和任务,少了谁都不行。
在实际应用中,邹氏检验就像是我们的秘密武器,能让我们在复杂的经济世界中找到规律,找到答案。
它让我们对经济现象不再是摸不着头脑,而是有了清晰的认识和理解。
总之呢,计量经济学的邹氏检验步骤可真是太重要啦!它就像是一把神奇的魔杖,能让我们在经济的海洋中畅游无阻,发现那些隐藏的宝藏!你说是不是很厉害呀!。