3-1导数概念1027
- 格式:ppt
- 大小:1.31 MB
- 文档页数:32
高二选修3-1数学知识点高二选修3-1数学知识点主要包括以下内容:函数与导数、定积分与不定积分、微分方程和空间解析几何。
下面将对这几个知识点进行详细的介绍。
一、函数与导数函数是数学中的基本概念,它描述了两个集合之间的对应关系。
在高中数学中,我们主要研究了一元函数和二元函数。
一元函数表示一个自变量和一个因变量之间的关系,而二元函数则表示两个自变量和一个因变量之间的关系。
导数是函数的一个重要概念,它描述了函数在某一点处的变化率。
导数可以用来求函数的切线方程、极值和最值等问题。
在求导的过程中,需要掌握常见函数的导数公式和求导法则,如常数函数、多项式函数、幂函数、指数函数、对数函数、三角函数等。
二、定积分与不定积分定积分是求曲线与坐标轴围成的图形的面积的一个重要工具。
在求解定积分时,我们需要先找到曲线与坐标轴的交点,再将曲线分成若干矩形区域,通过极限过程求和得到图形的面积。
定积分的求解需要掌握基本的积分公式和换元积分法等技巧。
不定积分是求函数的原函数的逆运算,也称为积分。
在求解不定积分时,我们需要找到一个函数的导函数,即该函数的原函数。
不定积分的求解需要掌握基本的积分公式、分部积分法和换元积分法等技巧。
三、微分方程微分方程是描述变量之间关系的方程,其中包含了导数或微分。
在求解微分方程时,我们需要找到函数的一个或多个未知函数,并求出满足方程的函数表达式。
常见的微分方程类型有一阶线性微分方程、一阶可分离变量微分方程、二阶常系数齐次线性微分方程等。
四、空间解析几何空间解析几何是将代数方法应用于几何问题的一个分支,它主要研究了空间中的点、线、面以及它们之间的关系。
在解析几何中,我们需要掌握空间直角坐标系的表示方法、点、线、面的方程、距离公式以及空间曲线的方程等。
综上所述,高二选修3-1数学知识点包括函数与导数、定积分与不定积分、微分方程和空间解析几何。
这些知识点在高中数学中扮演着重要的角色,不仅对学习其他学科有帮助,也为今后的学习和工作打下了坚实的基础。
人教版高中物理(选修3-1)公式1.F 是电场力(N ) k 是静电力常量(=×109N?m2/C2) q 1、q 2是电荷带电量(C ) r 是两个电荷的距离(m ); =F q E 是电场强度(N/C 或V/m2均可,1N/C=1V/m2) F 是电场力(N ) q 是电荷量(C )*点电荷:E Q 是点电荷电场强度(N/C 或V/m2均可,1N/C=1V/m2) k 是静电力常量(=×109N?m2/C2)Q 是点电荷带电量(C ) r 是半径(m );3. φ=E qφ是电势(V ) E 是电势能(J ) q 是电荷量(C ); 4.=U AB 是A 、B 两点的电势差(V ) q 是电荷量(C ) W AB 是从A 点到B 点做的功(J )E pA 是A 点的电势能(J ) E pB 是B 点的电势能(J ) φA 是A 点电势(V ) φB 是B 点电势(V );=EdU AB 是A 、B 两点的电势差(V ) d 是距离(m ) E 是电场强度(N/C 或V/m2均可,1N/C=1V/m2) =Q UC 是电容(F ) Q 是电荷量(C ) U 是电势差(V );7.推导公式:E=U d ==4πkQ εsE 是电场强度(N/C 或V/m2均可,1N/C=1V/m2)U 是电势差(V ) d 是距离(m ) Q 是带电量(C )k 是静电力常量(=×109N ?m2/C2)ε是相对介电常数;=Itq 是电荷量(C ) I 是电流(A ) t 是时间(s );=U R (欧姆定律) I=E R+r(闭合电路欧姆定律) I 是电流(A ) U 是电势差(电压)(V ) R 是电阻(Ω) E 是电动势(V ) r 是内电阻(Ω)推导公式:E=U 外+U 内=IR+IrU 外是外电路电势差(电压)(V )U 内是内电路电势差(电压)(V )串联电路总电阻:R=R1+R2+并联电路总电阻:=+=>R=*串联分压与电阻成正比,并联电流与电阻成反比:“串正并反”!=UI W=UIt=PtP是电功率(W)U是电势差(电压)(V)I是电流(A)W是电功(J)t是时间(s)推导公式:∵I=UR,P=UI ∴R=,P=I2RU额是额定电压(V)U实是实际电压(V)P额是额定功率(W)P实是实际功率(W)R是纯电阻电路的电阻(Ω)Q=I2Rt,R=ρL SQ是电流产生的热量(焦耳热)(J)L是导体长度(m)ρ是电阻率,由材料本身决定(Ω?m)S是导体横截面积(m2);*欧姆定律中的所有公式要求是在纯电阻电路中使用。
数学选修1—1知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句• 真命题:判断为真的语句•假命题:判断为假的语句•2、“若p,则q ”形式的命题中的p称为命题的条件,q称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p,则q ”,它的逆命题为“若q,则p ” .4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若p,贝U q” .5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p,则q ”,则它的否命题为“若q ,则p ” .四种命题的真假性之间的关系:1两个命题互为逆否命题,它们有相同的真假性;2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q,则p是q的充分条件,q是p的必要条件. 若p q,则p是q的充要条件(充分必要条件)•&用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q • 当p、q 都是真命题时,p q是真命题;当p、q两个命题中有一个命题是假命题时,p q是假命题.用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q .当p、q两个命题中有一个命题是真命题时,p q是真命题;当p、q两个命题都是假命题时,p q是假命题.对一个命题p全盘否定,得到一个新命题,记作p .若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.表示. 全称命题“对中任意一个X,有p x成立”,记作“ x ,p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用含有存在量词的命题称为特称命题.特称命题“存在中的一个X ,使p x成立”,记作,p x .全称命题的距离为d2,则一巳a F2d210、全称命题p: x , p x,它的否定p : x的否定是特称命题.11、平面内与两个定点F l, F2的距离之和等于常数(大于\F I F2\)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.13、设是椭圆上任一点,点到F1对应准线的距离为d1 ,点到F2对应准线14、平面内与两个定点F i , F2的距离之差的绝对值等于常数(小于|卩汗2| )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:17、设是双曲线上任一点,点到F i对应准线的距离为d i,点到F2对应准线的距离为d2,则e.d1d218、平面内与一个定点F和一条定直线I的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线I称为抛物线的准线.抛物线的“通径”,即2p .21、焦半径公式:若点X0,y0在抛物线y22px p0上,焦点为F,则FV ;若点30在抛物线2y2px p0上,焦点为F,贝H F 卫•2若点X0,y0在抛物线 2 X2py p0上,焦点为F,则Fy02若点30在抛物线 2 X2py p0上,焦点为F,贝卅Fy。
2013年高考数学总复习-3-1-导数的概念及运算-新人教B版Dsin x 1+cos x,x ∈(0,π),当y ′=2时,x 等于( ) A.π3 B.2π3C.π4D.π6[答案] B[解析] y ′=cos x ·1+cos x -sin x ·-sin x 1+cos x2 =11+cos x=2,∴cos x =-12, ∵x ∈(0,π),∴x =2π3. 5.(2011·山东淄博一中期末)曲线y =13x 3+x 在点⎝⎛⎭⎪⎪⎫1,43处的切线与坐标轴围成的三角形面积为( )A .1B .19C.13D.23[答案] B[解析] ∵y ′=x 2+1,∴k =2,切线方程y -43=2(x -1),即6x -3y -2=0,令x =0得y =-23,令y =0得x =13,∴S =12×13×23=19. 6.(文)已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >BC .B >A >CD .C >B >A[答案] A[解析] 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f a +1-f a a +1-a,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以,A >B >C .(理)设函数f (x )=sin ⎝⎛⎭⎪⎪⎫ωx +π6-1(ω>0)的导函数f ′(x )的最大值为3,则f (x )图象的一条对称轴方程是( )A .x =π9B .x =π6C .x =π3D .x =π2[答案] A[解析] f ′(x )=ωcos ⎝⎛⎭⎪⎪⎫ωx +π6的最大值为3, 即ω=3,∴f (x )=sin ⎝⎛⎭⎪⎪⎫3x +π6-1. 由3x +π6=π2+k π得,x =π9+k π3(k ∈Z). 故A 正确.7.如图,函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)=________.[答案] 2[解析]由条件知f′(5)=-1,又在点P处切线方程为y-f(5)=-(x-5),∴y=-x+5+f(5),即y=-x+8,∴5+f(5)=8,∴f(5)=3,∴f(5)+f′(5)=2.8.(文)(2011·北京模拟)已知函数f(x)=3x3+2x2-1在区间(m,0)上总有f′(x)≤0成立,则m 的取值范围为________.[答案][-49,0)[解析]∵f′(x)=9x2+4x≤0在(m,0)上恒成立,且f′(x)=0的两根为x1=0,x2=-49,∴-4≤m<0.9(理)设a∈R,函数f(x)=x3+ax2+(a-3)x 的导函数是f′(x),若f′(x)是偶函数,则曲线y =f(x)在原点处的切线方程为________.[答案]y=-3x[解析]f′(x)=3x2+2ax+(a-3),又f′(-x)=f′(x),即3x2-2ax+(a-3)=3x2+2ax+(a-3)对任意x∈R都成立,所以a=0,f′(x)=3x2-3,f′(0)=-3,曲线y=f(x)在原点处的切线方程为y=-3x.9.(2011·济南模拟)设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lg x n,则a1+a2+…+a99的值为________.[答案]-2[解析]点(1,1)在曲线y=x n+1(n∈N*)上,点(1,1)为切点,y ′=(n +1)x n ,故切线的斜率为k =n +1,曲线在点(1,1)处的切线方程y -1=(n +1)(x -1),令y =0得切点的横坐标为x n =n n +1,故a 1+a 2+…+a 99=lg(x 1x 2…x 99)=lg(12×23×…×99100)=lg 1100=-2.10.(文)设函数y =ax 3+bx 2+cx +d 的图象与y 轴交点为P ,且曲线在P 点处的切线方程为12x -y -4=0. 若函数在x =2处取得极值0,试确定函数的解析式.[解析] ∵y =ax 3+bx 2+cx +d 的图象与y 轴的交点为P (0,d ),又曲线在点P 处的切线方程为y =12x -4,P 点坐标适合方程,从而d =-4;又切线斜率k =12,故在x =0处的导数y ′|x=0=12而y ′|x =0=c ,从而c =12; 又函数在x =2处取得极值0,所以⎩⎨⎧ y ′|x =2=0f 2=0即⎩⎨⎧12a +4b +12=08a +4b +20=0解得a =2,b =-9所以所求函数解析式为y =2x 3-9x 2+12x -4.(理)(2010·北京东城区)已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间.[解析] (1)因为函数f (x )=ax 2+b ln x , 所以f ′(x )=2ax +bx .又函数f (x )在x =1处有极值12,所以⎩⎨⎧ f ′1=0f 1=12,即⎩⎨⎧2a +b =0a =12,可得a =12,b =- 1.(2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞),且f ′(x )=x -1x =x +1x -1x .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞) f ′(x ) - 0 +f (x )↘极小值↗所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞).11.(文)(2011·聊城模拟)曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( )A.94e 2B .2e 2C .e 2 D.e22[答案] D[解析] y ′|x =2=e 2,∴切线方程为y -e 2=e 2(x -2),令x =0得y =-e 2,令y =0得x =1, ∴所求面积S =e 22.(理)(2011·湖南文,7)曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .- 12 B.12C .- 22 D.22[答案] B[解析] ∵y ′=cos x sin x +cos x -sin x cos x -sin xsin x +cos x2=1sin x +cos x2,∴y ′|x =π4=12. 12.(文)(2011·江西理,4)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0) [答案] C[解析] 因为f (x )=x 2-2x -4ln x , ∴f ′(x )=2x -2-4x =2x 2-x -2x>0, 即⎩⎨⎧x >0x 2-x -2>0,解得x >2,故选C.(理)(2011·广东省汕头市四校联考)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导函数f ′(x )<12,则f (x )<x 2+12的解集为( )A .{x |-1<x <1}B .{x |x <-1}C .{x |x <-1或x >1}D .{x |x >1} [答案] D[解析] 令φ(x )=f (x )-x 2-12,则φ′(x )=f ′(x )-12<0,∴φ(x )在R 上是减函数,φ(1)=f (1)-12-12=1-1=0,∴φ(x )=f (x )-x 2-12<0的解集为{x |x >1},选D.13.(文)二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )图象是过第一、二、三象限的一条直线,故2a >0,b >0,则f (x )=a (x +b 2a )2-b 24a ,顶点(-b 2a ,-b 24a)在第三象限,故选C. (理)函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图象大致为( )[答案] A[解析] ∵f (x )=x cos x , ∴f ′(x )=cos x -x sin x ,∴f ′(-x )=f ′(x ),∴f ′(x )为偶函数,排除C ; ∵f ′(0)=1,排除D ;由f ′⎝⎛⎭⎪⎪⎫π2=-π2<0,f ′(2π)=1>0,排除B ,故选A.14.(文)(2011·山东省济南市调研)已知函数f(x)的图象在点M(1,f(1))处的切线方程是2x-3y+1=0,则f(1)+f′(1)=________.[答案]5 3[解析]由题意知点M在f(x)的图象上,也在直线2x-3y+1=0上,∴2×1-3f(1)+1=0,∴f(1)=1,又f′(1)=23,∴f(1)+f′(1)=53.(理)(2011·朝阳区统考)若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是________.[答案](-∞,0)[解析]由题意,可知f′(x)=3ax2+1x,又因为存在垂直于y轴的切线,所以3ax2+1x=0⇒a=-13x3(x >0)⇒a ∈(-∞,0).15.(文)(2010·北京市延庆县模考)已知函数f (x )=x 3-(a +b )x 2+abx ,(0<a <b ).(1)若函数f (x )在点(1,0)处的切线的倾斜角为3π4,求a ,b 的值; (2)在(1)的条件下,求f (x )在区间[0,3]上的最值;(3)设f (x )在x =s 与x =t 处取得极值,其中s <t ,求证:0<s <a <t <b .[解析] (1)f ′(x )=3x 2-2(a +b )x +ab ,tan 3π4=-1.由条件得⎩⎨⎧f 1=0f ′1=-1,即⎩⎨⎧1-a +b +ab =03-2a +b +ab =-1,解得a=1,b=2或a=2,b=1,因为a<b,所以a=1,b=2.(2)由(1)知f(x)=x3-3x2+2x,f′(x)=3x2-6x+2,令f′(x)=3x2-6x+2=0,解得x1=1-3 3,x2=1+3 3.在区间[0,3]上,x,f′(x),f(x)的变化情况如下表:x 0(0,x1)x1(x1,x2)x2(x2,3) 3 f′(x)+0-0+f(x)0递增239递减-239递增 6所以f(x)max=6;f(x)min=-23.(3)证明:f′(x)=3x2-2(a+b)x+ab,依据题意知s,t为二次方程f′(x)=0的两根.∵f′(0)=ab>0,f′(a)=a2-ab=a(a-b)<0,f′(b)=b2-ab=b(b-a)>0,∴f′(x)=0在区间(0,a)与(a,b)内分别有一个根.∵s<t,∴0<s<a<t<b.(理)已知定义在正实数集上的函数f(x)=1 2x2+2ax,g(x)=3a2ln x+b,其中a>0.设两曲线y =f(x),y=g(x)有公共点,且在该点处的切线相同.(1)用a表示b,并求b的最大值;(2)求证:f(x)≥g(x)(x>0).[解析](1)设y=f(x)与y=g(x)(x>0)的公共点为(x0,y0),∴x0>0.∵f′(x)=x+2a,g′(x)=3a2 x,由题意f(x0)=g(x0),且f′(x0)=g′(x0).∴⎩⎪⎨⎪⎧ 12x 20+2ax 0=3a 2ln x 0+b x 0+2a =3a 2x 0,由x 0+2a =3a 2x 0得x 0=a 或x 0=-3a (舍去). 则有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a . 令h (a )=52a 2-3a 2ln a (a >0), 则h ′(a )=2a (1-3ln a ).由h ′(a )>0得,0<a <e 13 ,由h ′(a )<0得,a >e 13 .故h (a )在(0,e 13)为增函数,在(e 13,+∞)上为减函数,∴h (a )在a =e 13时取最大值h (e 13)=32e 23 .即b 的最大值为32e 2 3.(2)设F(x)=f(x)-g(x)=12x2+2ax-3a2ln x-b(x>0),则F′(x)=x+2a-3a2x=x-a x+3ax(x>0).故F(x)在(0,a)为减函数,在(a,+∞)为增函数,于是函数F(x)在(0,+∞)上的最小值是F(a)=F(x0)=f(x0)-g(x0)=0.故当x>0时,有f(x)-g(x)≥0,即当x>0时,f(x)≥g(x).1.(2011·安徽省“江南十校”高三联考)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+x2,则f′(1)=()A.-1 B.-2C.1 D.2[答案] B[解析]f′(x)=2f′(1)+2x,令x=1得f′(1)=2f′(1)+2,∴f′(1)=-2,故选B.2.(2011·茂名一模)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x +1,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.4 B.-1 4C.2 D.-1 2[答案] A[解析]∵f(x)=g(x)+x2,∴f′(x)=g′(x)+2x,∴f′(1)=g′(1)+2,由条件知,g′(1)=2,∴f′(1)=4,故选A.3.(2010·360题库网高考)曲线y=xx+2在点(-1,-1)处的切线方程为()A.y=2x+1 B.y=2x-1C.y=-2x-3 D.y=-2x-2[答案] A[解析]∵y′=x′x+2-x x+2′x+22=2x+22,∴k=y′|x=-1=2-1+22=2,∴切线方程为:y+1=2(x+1),即y=2x+1.4.(2011·湖南湘西联考)下列图象中有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=()A.13 B .-13C.53 D .-53[答案] B[解析] f ′(x )=x 2+2ax +(a 2-1),∵a ≠0, ∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,f (-1)=-13-1+1=-13. 5.(2011·广东省佛山市测试)设f (x )、g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且满足f ′(x )g (x )+f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )[答案] C[解析] 因为f ′(x )g (x )+f (x )g ′(x )=[f (x )g (x )]′,所以[f (x )g (x )]′<0,所以函数y =f (x )g (x )在给定区间上是减函数,故选C.6.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.7.(2010·东北师大附中模拟)定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=x ,h (x )=ln(x +1),φ(x )=x 3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为()A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α[答案] C[解析]由g(x)=g′(x)得,x=1,∴α=1,由h(x)=h′(x)得,ln(x+1)=1x+1,故知1<x+1<2,∴0<x<1,即0<β<1,由φ(x)=φ′(x)得,x3-1=3x2,∴x2(x-3)=1,∴x>3,故γ>3,∴γ>α>β.[点评]对于ln(x+1)=1x+1,假如0<x+1<1,则ln(x+1)<0,1x+1>1矛盾;假如x+1≥2,则1x+1≤12,即ln(x+1)≤12,∴x+1≤e,∴x≤e-1与x≥1矛盾.8.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=() A.26B.29C.212 D.215[答案] C[解析]f′(x)=x′·[(x-a1)(x-a2)…(x-a8)]+[(x-a1)(x-a2)…(x-a8)]′·x=(x-a1)(x-a2)…(x-a8)+[(x-a1)(x-a2)…(x-a8)]′·x,所以f′(0)=(0-a1)(0-a2)...(0-a8)+[(0-a1)(0-a2)...(0-a8)]′.0=a1a2 (8)因为数列{a n}为等比数列,所以a2a7=a3a6=a4a5=a1a8=8,所以f′(0)=84=212.。
导数运算法则公式加减乘除
导数运算法则是微积分中的重要内容,它包括加法法则、减法
法则、乘法法则和除法法则。
下面我将分别介绍这些法则的公式。
1. 加法法则:
如果函数 f(x) 和 g(x) 都是可导的,那么它们的和的导数就
是它们各自的导数之和,即 (f(x) + g(x))' = f'(x) + g'(x)。
2. 减法法则:
同样地,如果函数 f(x) 和 g(x) 都是可导的,那么它们的差
的导数就是它们各自的导数之差,即 (f(x) g(x))' = f'(x) g'(x)。
3. 乘法法则:
对于两个可导的函数 f(x) 和 g(x),它们的乘积的导数可以用
以下公式表示,(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)。
4. 除法法则:
如果函数 f(x) 和 g(x) 都是可导的,且 g(x) 不等于 0,那
么它们的商的导数可以用以下公式表示,(f(x) / g(x))' = (f'(x) g(x) f(x) g'(x)) / (g(x))^2。
这些导数的运算法则是微积分中非常基础和重要的内容,它们
帮助我们计算复杂函数的导数,从而更好地理解函数的变化规律和
性质。
在实际应用中,这些法则可以帮助我们简化计算,提高效率。
希望这些公式能够帮助你更好地理解导数运算法则。
专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
导数口诀:
常为零,幂降次,对导数,指不变;正变余,余变正,切割方,割乘切,反分式.在
推导的过程中有这几个常见的公式需要用到:
1. ①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v²
2.原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数
是x=g(y),则有y'=1/x'.
3. 复合函数的导数:
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变
量的导数--称为链式法则。
4. 积分号下的求导法则:
d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)]
常用公式
这里将列举12个基本初等函数的导数以及它们的推导过程,初等函数的导数可由之推算。
函数原函数导函数
常函数
(即常数)
(
为常数)
幂函数
指数函数
对数函数(且,)
正弦函数余弦函数正切函数余切函数反正弦函数反余弦函数反正切函数反余切函数。
3的负一次方计算过程
3的负一次方,也叫做“倒数”,是一种数学表达式,它是将一个数据取反,然后求出这个数据的倒数。
3的负一次方就是1/3,其计算过程如下:
首先,要了解什么是函数次方,以及负次方的基本概念。
函数次方是指把一个函数平方或立方,可以使用指数来表示。
比如2的三次方就可以用8表示。
而负次方则表示把一个函数的倒数求出来。
比如2的负三次方就可以用1/8表示。
其次,要明白3的负一次方的计算过程,首先要了解什么是倒数。
倒数指的是一个数和另一个数的乘积等于1的两个数的关系。
例如,5的倒数就是1/5,因为
5*1/5=1。
3的负一次方也是求倒数的过程,即3的倒数。
接下来,我们将来计算3的负一次方。
在计算之前,首先要记住一点:乘法和除法是相反的,即a*b=c,那么
b=c/a,这就是计算倒数所用的原理,即把除法转化为乘法。
因此,3的负一次方就是把3取倒数,即把3除以1,即1/3。
用数学公式表示就是:
3^-1=1/3
最后,我们可以得到3的负一次方的答案:1/3。
从数学的角度讲,3的负一次方就是把3除以1,即两个数的乘积是1,即1/3。