跟踪训练1-1:下列数列哪些是有穷数列?哪些是无穷数列?哪些是 递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列?
(1)1, 1 , 1 ,…, 1 ,…; 23 n
(2)1,3-1,3-2,…,3-63; (3)1,-0.1,0.12,…,(-0.1)n-1,…; (4)10,20,40,…,1280; (5)-1,2,-1,2,…; (6)6,6,6,…. 解: (2)、(4)是有穷数列,(1)、(3)、(5)、(6)是无穷数列,(4)是递增 数列,(1)(2)是递减数列,(3)(5)是摆动数列,(6)是常数列.
所以此方程不存在正整数解,故 3 不是此数列中的项.
达标检测——反馈矫正 及时总结
1.下面三个结论: ①1,1,1,1,…是数列 ②cos0,sin1,tan2不是数列 ③-3,-2,1,x,2,3,y,6是一个项数为8的数列 其中正确的有( B ) (A)0个 (B)1个 (C)2个 (D)3个 解析:①正确,是按一定次序排列的一列数,符合定义. ②错误.cos0,sin1,tan2都是数,而且是按一定次序排列的,所以它是数列. ③错误.因为数列必须是由一列数按一定次序排列而成,但x,y不一定为数. 故选B.
1.对通项公式的认识 (1)并不是所有的数列都有通项公式,如由π的精确度的数值排列: 3,3.1,3.14,3.141,3.1415,3.14159,….就没有通项公式.
(2)如果数列有通项公式,其表示形式也不一定是唯一的.如数列: 1,0,-1,0,1,0,-1,0,….通项公式可以是 an=sin nπ ,也可以是
1.数列的概念 按照 一定顺序 排列的一列数称为数列.数列中的每一个数叫做这个数 列的 项 .数列的一般形式可以写成a1,a2,a3,…,an,…,简记为{an}. 2.数列的分类 (1)按项的个数分类