2020年考研数学概率需掌握30种运算
- 格式:docx
- 大小:37.27 KB
- 文档页数:2
【导语】时间飞逝,很多考⽣抱怨概率论与数理统计部分难度较⼤,其中事件概率计算的五⼤公式是数⼀、数三,396考纲中都有要求的内容,所以也⽐较重要。
下⾯⽆忧考整理了概率计算的五⼤公式,供参考。
五⼤公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。
1、减法公式,P(A-B)=P(A)-P(AB)。
此公式来⾃事件关系中的差事件,再结合概率的可列可加性总结出的公式。
2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。
此公式来⾃于事件关系中的和事件,同样结合概率的可列可加性总结出来。
学⽣还应掌握三个事件相加的加法公式。
以上两个公式,在应⽤当中,有时要结合⽂⽒图来解释会更清楚明⽩,同时这两个公式在考试中,更多的会出现在填空题当中。
所以记住公式的形式是基本要求。
3、乘法公式,是由条件概率公式变形得到,考试中较多的出现在计算题中。
在复习过程中,部分同学分不清楚什么时候⽤条件概率来求,什么时候⽤积事件概率来求。
⽐如“第⼀次抽到红球,第⼆次抽到⿊球”时,因为第⼀次抽到红球也是未知事件,所以要考虑它的概率,这时候⽤积事件概率来求;如果“在第⼀次抽到红球已知的情况下,第⼆次抽到⿊球的概率”,这时候因为已知抽到了红球,它已经是⼀个确定的事实,所以这时候不⽤考虑抽红球的概率,直接⽤条件概率,求第⼆次取到⿊球的概率即可。
4、全概率公式 5、贝叶斯公式 以上两个公式是五⼤公式极为重要的两个公式。
结合起来学习⽐较容易理解。
⾸先,这两个公式⾸先背景是相同的,即,完成⼀件事情在逻辑或时间上是需要两个步骤的,通常把第⼀个步骤称为原因。
其次,如果是“由因求果”的问题⽤全概率公式;是“由果求因”的问题⽤贝叶斯公式。
例如;买零件,⼀个零件是由A、B、C三个⼚家⽣产的,分别次品率是a%,b%,c%,现在求买到次品的概率时,就要⽤全概率公式;若已知买到次品了,问是A⼚⽣产的概率,这就要⽤贝叶斯公式了。
这样我们⾸先分清楚了什么时候⽤这两个公式。
考研概率论与数理统计公式大全一、概率论部分:1.概率公式:-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A发生的可能性,n(S)表示样本空间S中的样本个数。
-互斥事件的概率:P(A∪B)=P(A)+P(B)。
-非互斥事件的概率:P(A∪B)=P(A)+P(B)-P(A∩B)。
2.条件概率公式:-事件A在事件B发生的条件下发生的概率:P(A,B)=P(A∩B)/P(B)。
3.乘法公式:-事件A、B同时发生的概率:P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)。
4.全概率公式:-事件A可以由一系列互斥且构成样本空间的事件B1、B2、..、Bn发生的概率:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)=ΣP(A∩Bi)。
5.贝叶斯公式:-已知事件A发生的条件下事件B发生的概率:P(B,A)=P(A∩B)/P(A)=P(A,B)*P(B)/P(A)。
6.重要的离散概率分布:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中n为试验次数,k为成功次数,p为每次成功的概率。
-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。
7.重要的连续概率分布:-均匀分布:f(x)=1/(b-a),其中a为最小值,b为最大值。
-正态分布:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
二、数理统计部分:1.基本概念:-总体:研究对象的全体。
-样本:从总体中抽取的一部分个体。
-参数:总体的特征数值。
-统计量:样本的特征数值。
2.基本统计量:- 样本均值:x̄ = (x1 + x2 + ... + xn) / n,其中x1、x2、..、xn为样本数据,n为样本容量。
- 样本方差:s^2 = ((x1-x̄)^2 + (x2-x̄)^2 + ... + (xn-x̄)^2) / (n-1)。
考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。
而随机事件是指在一次试验中,不能事先确定出现的结果。
概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。
同时,P(Ω) = 1,其中Ω是样本空间。
二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。
三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。
条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。
四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。
考研数学概率论32个常考知识点1500字概率论是数学中的重要分支之一,也是考研数学中的重要部分。
在考研数学概率论中,有一些常考的知识点需要掌握。
以下是32个常考的概率论知识点:1. 概率的定义和基本性质:概率是指事件发生的可能性,介于0和1之间。
2. 事件之间的关系:包括事件的和、差和积等。
3. 随机事件的分类:包括必然事件、不可能事件、简单事件和复合事件等。
4. 古典概型:指的是由有限个等可能的基本事件组成的样本空间。
5. 频率的概念:频率是指某个事件出现的次数与试验次数的比。
6. 相对频率的概念:相对频率是指某个事件出现的次数与试验次数的比。
7. 随机变量的定义:随机变量是指将样本空间映射到实数的函数。
8. 离散型随机变量和连续型随机变量:根据随机变量的取值是否为有限个或可排多数的情况进行分类。
9. 随机变量的概率分布:指的是随机变量各取值的概率。
10. 随机变量的期望:期望是指随机变量取各值的加权平均值。
11. 随机变量的方差:方差是指随机变量与其期望之差的平方的期望。
12. 切比雪夫不等式:切比雪夫不等式是指随机变量距离其期望的距离小于等于标准差的k倍的概率不小于1-1/k^2。
13. 二维随机变量的联合分布:二维随机变量的联合分布指的是两个随机变量同时取某些值的概率。
14. 边缘分布:边缘分布是指从联合分布中得到的各个边缘概率分布。
15. 条件分布:条件分布是指在给定某个条件下的随机变量的概率分布。
16. 独立性:独立性是指两个随机变量的联合概率分布等于边缘概率分布的乘积。
17. 二项分布:二项分布是指n个相互独立的重复试验中成功次数的概率分布。
18. 泊松分布:泊松分布是指单位时间内随机事件发生次数的概率分布。
19. 几何分布:几何分布是指在独立重复试验中,第一次成功时进行的试验次数的概率分布。
20. 均匀分布:均匀分布是指一个区间内每个点的概率相等。
21. 指数分布:指数分布是一个连续型概率分布,描述时间的间隔。
概率公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=ni i ni i A A 11===ni i ni i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i nj i j ini ini i A A A P A A A P A AP AP A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A BP A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i ik k B AP B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P kn kkn ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f xλλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xtd 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X XYX0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X XYY )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X XY =)(x y f XY)(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征 数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()lkY E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ简单整理了一下,中心极限定理及数理统计部分多概念少公式故未详细列出,有问题可以给我来信,希望能与大家多交流。
考研数学概率论重点公式速记概率论是数学中的一个重要分支,广泛应用于各个领域。
对于考研数学概率论的学习来说,熟悉并掌握相关的重点公式是非常必要的。
本文将为大家提供一些概率论中的重点公式,帮助大家更好地进行复习和备考。
一、基本概念1. 概率的加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)2. 概率的乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A)P(B|A) = P(B)P(A|B),其中P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
3. 全概率公式:若{B1, B2, ..., Bn}为样本空间的一个划分,即满足Bi与Bj互不相容且它们的并集为样本空间,同时假设P(Bi) > 0,那么对于任意一个事件A,有:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(B1)P(A|B1) +P(B2)P(A|B2) + ... + P(Bn)P(A|Bn)二、常用概率分布1. 二项分布:设试验成功的概率为p,则n次试验中成功次数的概率为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中C(n,k)为组合数,表示从n个元素中取出k个元素的组合数。
2. 泊松分布:设单位时间(或单位面积)内某事件发生的次数的平均值为λ,则单位时间(或单位面积)内某事件发生k次的概率为:P(X=k) = (e^(-λ) * λ^k) / k!其中e为自然对数的底数(约等于2.71828)。
3. 正态分布:对于服从正态分布N(μ,σ^2)的随机变量X,其概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2σ^2)))三、常用性质1. 期望:对于离散随机变量X,其期望值E(X)为:E(X) = Σ(x * P(X=x))对于连续随机变量X,其期望值E(X)为:E(X) = ∫(x * f(x)) dx,其中f(x)为概率密度函数。
概率论与数理统计必考知识点一、随机事件和概率1、随机事件与其概率2、概率的定义与其计算二、随机变量与其分布1、分布函数性质bP=≤)FX(b)()P-aX≤b<=)F(()bF(a2、离散型随机变量3..连续型随机变量三、多维随机变量与其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()(+∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E =)()]([X E X E E =)()(X CE CX E =(2))()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()()()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =±2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov =),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+),(),(Y X abCov d bY c aX Cov =++8五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
考研数学概率部分公式复习概率是数学中一个重要的分支,常以随机试验为基础进行研究,主要研究事件的概率和随机变量的分布。
而概率论的数学基础则包括概率公式、条件概率、独立性、随机变量的分布等等。
在考研中,数学概率部分是必考内容之一,理解和熟练掌握这些公式是非常重要的。
下面就对考研数学概率部分的公式进行复习。
一、基本公式:1.概率公式:对于一个随机试验E,事件A的概率P(A)定义为A发生的次数在试验总次数n中所占的比例。
P(A)=m/n2.互斥事件的概率公式:如果事件A和B互斥(即不能同时发生),则它们的概率满足如下关系:P(A∪B)=P(A)+P(B)3.和事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)-P(A∩B)4.减事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A-B)=P(A)-P(A∩B)5.互斥事件的概率和与减公式:对于两个互斥事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)P(A-B)=P(A)-P(A∩B)二、条件概率和乘法原理:1.条件概率公式:对于两个事件A和B,且P(A)>0,条件概率P(B,A)定义为在事件A发生的条件下事件B发生的概率。
P(B,A)=P(A∩B)/P(A)2.乘法原理:对于两个事件A和B,它们同时发生的概率等于事件A 发生的概率乘以在事件A发生的条件下事件B发生的概率。
P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)三、全概率公式和贝叶斯公式:1.全概率公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分(即互不相交且并起来就是全集),则对于任意事件A,它的概率满足如下关系:P(A)=P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)2.贝叶斯公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分,则对于任意事件A,它的概率满足如下关系:P(Bi,A)=P(Bi)P(A,Bi)/[P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)]四、随机变量和分布:1.随机变量:随机变量是定义在样本空间上的一个实值函数,它的取值是由随机试验的结果决定的。
2020考研数学复习:概率论部分核心内容和典型题型汇总2020考研数学复习:概率论部分核心内容和典型题型汇总今天对概率论与数理统计这么学科中的核心内容和典型题型做出一个总结,帮助小伙伴们在复习中抓住主要矛盾,从而提高复习效率。
►第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立;五个运算:并,交,差;四个运算律:交换律,结合律,分配律,对偶律(德摩根律);概率的基本性质:非负性,规范性,有限可加性,逆概率公式;五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;条件概率;利用独立性进行概率计算;重xx概型的计算.近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:1.随机事件的关系运算;2.求随机事件的概率;3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式.►第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件);分布xx和概率密度的性质(充要条件);八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用;会计算与随机变量相联系的任一事件的概率;随机变量简单函数的概率分布.近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布.二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数;2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定;3.反求或判定分布中的参数;4.求一维随机变量在某一区间的概率;5.求一维随机变量函的分布.►第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布.本章是概率论重点部分之一!应着重对待。
2020年考研概率论与数理统计公式大全(一)1、排列组合公式从m个人中挑出n个人实行排列的可能数。
从m个人中挑出n个人实行组合的可能数。
2、加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
3、一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题4、随机试验和随机事件如果一个试验在相同条件下能够重复实行,而每次试验的可能结果不止一个,但在实行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
5、基本事件、样本空间和事件在一个试验下,不管事件有多少个,总能够从其中找出这样一组事件,它具有如下性质:①每实行一次试验,必须发生且只能发生这个组中的一个事件;②任何事件,都是由这个组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 CB AC B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 ACAB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律BA B A =+BA AB +=2、概率的定义及其计算公式名称公式表达式求逆公式 )(1)(A P A P -=加法公式)()()()(AB P B P A P B A P -+=+条件概率公式)()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式)∑∞==1)()()()()(i i jj j j A B P AP A B P A P B A P伯努力概型公式nk p p C k P kn k k n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P kk二项分布),(p n Bn k p p C k X P kn k k n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P n Nkn MN kM +===--3..续型随机变量分布名称密度函数分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=bx b x a ab ax ax x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x ex f x λλ⎩⎨⎧≥-<=-0,10,0)(x ex x F xλ正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x2221)(πϕ⎰∞---=x t t ex F d 21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布∑∑======⋅jjijj i i i py Y x XP x X P p ),()(∑∑======⋅iiijj i j j py Y x XP y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p j ij j j i j i ji2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvduv u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudvv u f y F ),()(⎰+∞∞-=duy u f y f Y ),()(5、二维随机变量的条件分布+∞<<-∞=y x f y x f x y f X XY,)(),()(+∞<<-∞=x y f y x f y x f Y YX,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k kk p x X E 连续型随机变量:⎰+∞∞-=dxx xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov ),(Y X Cov7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p -二行分布),(p n B np)1(p np -泊松分布)(λP λ λ几何分布)(p G p 1 21pp -超几何分布),,(n M N H NM n1)1(---N m N NM NM n均匀分布),(b a U 2b a +12)(2a b -正态分布),(2σμN μ2σ 指数分布)(λEλ121λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E XP ≤≥-或2)(1})({ξξX D X E XP -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni iXE n Xn11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i≤2σ则:∑∑==∞→−→−ni iPni in XE nXn11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pni iX n113、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:n Xnk-∑μ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有:⎰∞--+∞→Φ==≤--xtn x x dt ex p np npP )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b X aP nk knk k -Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k n k n x F x x x F =∏=2、统计量 (1)样本平均值:∑==ni iX nX11 (2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S122122)(11)(11(3)样本标准差:∑=--=ni iX X n S 12)(11(4)样本k 阶原点距:2,1,11==∑=k X nA ni k ik(5)样本k 阶中心距:∑==-==ni kikkk X X nMB 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
考研数学:概率论口诀第1篇:考研数学:概率论口诀概率的公式概念背下来是基本的要求,但概率的公式和高等数学的公式相比,仅仅记住它是不够的。
概率论与数理统计中繁多杂乱的公式、概念想必折磨了不少考生,下面为大家整理了各章口诀,帮*生们轻松应对概率论与数理统计。
第一章:随机事件互斥对立加减功,条件*乘除清;全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。
第二、三章:一维、二维随机变量离散问模型,分布列表清,边缘用加乘,条件概率定联合,*试矩阵;连续必分段,草图仔细看,积分是关键,密度微分算;离散先列表,连续后求导,分布要分段,积分画图算。
第五、六章:数理统计、参数估计正态方和卡方出,卡方相除变f;若想得到t分布,一正n卡再相除;样本总体相互换,矩法估计很方便;似然函数分开算,对数求导得零蛋;区间估计有点难,样本函数选在前;分位维数惹人嫌,导出置信u方甜。
第七章:假设检验检验均值用u-t,分位对称别大意;方差检验有卡方,左窄右宽不稀奇;不论卡方或u-t,维数减一要牢记;代入比较临界值,拒绝必在否定域。
第2篇:考研数学有哪些概率统计的口诀考研数学是一门比较复杂的科目,在复习概率统计的时候,我们需要掌握一些口诀。
小编为大家精心准备了考研数学口诀助你学概率统计,欢迎大家前来阅读。
正态方和卡方()出,卡方相除变;若想得到分布,一正卡再相除。
第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。
参数的矩估计量(值)、最大似然估计量(值)也是经常考的。
很多同学遇到这样的题目,总是感觉到束手无策。
题目中给出的样本值完全用不上。
其实这样的题目非常简单。
只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。
矩法的基本思想就是用样本的阶原点矩作为总体的阶原点矩。
估计矩估计法的解题思路是:1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。
考研数学概率论32个常考知识点1500字概率论是数学中的一个重要分支,它研究的是随机事件发生的规律和概率的计算方法。
在考研数学中,概率论也是一个重要的考点。
下面列举了32个常考的概率论知识点。
1. 随机事件和对立事件随机事件是指在一次试验中可能发生也可能不发生的事件,而对立事件是指与某一事件互为补事件的事件。
2. 必然事件和不可能事件必然事件是指在一次试验中一定发生的事件,而不可能事件是指在一次试验中不可能发生的事件。
3. 事件的运算事件的运算包括并、交、差、互斥等操作,它们对应的概率运算是求和、乘积、差、互补等。
4. 事件的等价关系事件的等价关系是指两个事件发生的可能性相同,即它们的概率相等。
5. 随机变量的概念随机变量是指根据实验结果的不同而可能取得不同值的变量。
它可以是离散型的,也可以是连续型的。
6. 离散型随机变量的分布律离散型随机变量的分布律是指随机变量取各个值的概率。
7. 离散型随机变量的数学期望离散型随机变量的数学期望是指随机变量的取值与其对应的概率乘积的总和。
8. 离散型随机变量的方差离散型随机变量的方差是指随机变量与其数学期望之差的平方的期望值。
9. 连续型随机变量的概率密度函数连续型随机变量的概率密度函数是指随机变量在某个区间内取值的概率密度。
10. 连续型随机变量的数学期望、方差与标准差连续型随机变量的数学期望是指随机变量乘以概率密度函数后的积分。
方差和标准差的计算方法与离散型随机变量相似。
11. 两个随机变量的联合概率分布两个随机变量的联合概率分布是指两个随机变量同时取某种取值时的概率。
12. 两个随机变量的独立性两个随机变量的独立性是指它们的联合概率分布可以分解成各自的边缘概率分布的乘积形式。
13. 随机变量函数的分布如果一个随机变量是另一个随机变量的函数,那么它们的分布是相关联的。
14. 大数定律大数定律是指在独立重复试验中,样本数量足够大时,样本平均值趋近于总体均值的概率越来越大。
考研数学概率论需要掌握的30个题型(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率考研数学概率一定要掌握的30个题型;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、&chi2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用&chi2检验法对总体分布假设进行检验;考研数学中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。
2020年考研数学复习:掌握概率知识点第一部分:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视,第二部分:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。
第三部分:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量联合概率分布及其性质(3)二维连续型随机变量联合概率密度及其性质(4)二维随机变量联合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点相关,每个知识点都是重点,务必重视!第四部分:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算第五部分:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
第六部分:数理统计的基本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵活使用解决此类问题不在话下第七部分:参数估计(1)点估计(2)估计量的优良性(3)区间估计其中:本章点估计是重点,是解答题的重灾区,一定要掌握点估计的两种解题步骤,至于(2)(3)两个能够了解下即可新东方网校推荐:2020年考研课程!!点击进入免费试听>>。
2020年考研数学概率需掌握30种运算
(1)确定事件间的关系,实行事件的运算;
(2)利用事件的关系实行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)相关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝
叶斯公式计算概率;
(6)相关事件独立性的证明和计算概率;
(7)相关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性
质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;
(11)求随机变量函数的分布(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利
用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理实行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设实行显著性检验;
(30)利用χ2检验法对总体分布假设实行检验。