25-2.2 用列举法求概率(2)
- 格式:ppt
- 大小:2.23 MB
- 文档页数:42
《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+Θ.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328Θ>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108o.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴214323()233AGH ABH S S cm ∆∆==⨯=由123223GH ⨯=得:233GH cm =在Rt △AGH 中,根据勾股定理得:2223432233AH cm GH ⎛⎫=+== ⎪ ⎪⎝⎭∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:BB ′=2OB =5221222222=+=+BC OC§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′OCBAAB C D§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y y += 解得1x =-,2y =∴()22120x y +=⨯-+= 3.(1)D 的坐标为(3,-4)或(-7,-4)或(-1,8) (2)C 的坐标为(-1,-2),D 的坐标为(4,-2), 画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 303. 半径 圆上 三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤53. 63三、1. 120o2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1) ∠AOB=∠COD,= (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN-5-4CBA65-3-2-1-6-5-4-3-2-1432174653210yxD-5-4CBA65-3-2-1-6-5-4-3-2-1432174653210yx⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28o 2. 43.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >63. 内部, 斜边上的中点, 外部 三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31三、1.(1) 91 (2) 31 (3) 322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。