机器人鲁棒神经网络控制与仿真
- 格式:pdf
- 大小:307.49 KB
- 文档页数:4
基于神经网络的动力学建模与控制研究随着科技的不断进步,神经网络技术在各个领域的应用得到了越来越广泛的推广。
其中,基于神经网络的动力学建模与控制研究成为了一个热门话题。
神经网络可以模拟大脑下的感知、认知、控制和决策等系统的行为,将传统的模型变得更加逼真,同时也具有更好的泛化性能。
本文将探讨基于神经网络的动力学建模与控制研究的相关问题。
一、神经网络在动力学建模中的应用神经网络在动力学建模中广泛应用于环境监测、智能交通、无人机、机器人等领域。
在这些领域中,动力学建模可以对物理现象进行建模与仿真,从而实现预测、控制和优化等目的。
例如,在环境监测中,神经网络可以通过传感器获取环境数据并进行分析、处理,找到环境数据之间的关系,并对可能出现的环境问题进行预测和控制。
在智能交通领域,神经网络可以帮助自动驾驶汽车快速反应并做出正确的判断,确保交通安全。
在机器人领域,神经网络可以对机器人行为进行控制,从而实现较高的自主性和智能化。
二、神经网络在动力学控制中的应用神经网络在动力学控制中的应用一直是学者们研究的重点。
动力学控制是指通过学习和预测未来状态,确定动态系统的最优控制策略来达成预期的目标。
神经网络可以通过对动态系统进行建模和控制,实现对系统的快速响应、精确控制、稳定运行等目的。
例如,在工业自动化领域中,神经网络可用于智能样机的控制和优化设计,以达到增加生产效率、减少成本的目的;在金融领域中,神经网络可以用于交易策略的预测和优化,提高投资收益率;在电力系统中,神经网络可用于电力负荷预测和优化调度,保证系统的稳定运行。
三、神经网络建模与控制研究中存在的问题虽然神经网络在动力学建模与控制研究中的应用范围很广,但在实际应用过程中,还存在着一些问题亟待解决。
1. 神经网络参数选择问题神经网络需要选择最优的参数来进行训练和优化。
算法的抉择和参数的选择都对神经网络的精度和泛化能力有着重要影响。
如何选择合适的参数和算法,是当前研究的重点。
新型控制方法及其应用一、背景新技术的不断发展促使着各行各业的革新,自动化控制技术也不例外。
新型控制方法的应用可以提高生产效率、降低人工成本、保证产品质量,受到了广泛的关注和追捧。
二、新型控制方法1.模糊控制模糊控制是一种基于模糊逻辑的控制方法,它通过模糊化系统输入和输出来实现控制。
与传统的控制方法相比,模糊控制具有很强的自适应性,能够适应系统非线性、时变等复杂特性。
2.神经网络控制神经网络控制是一种基于神经网络的控制方法,它通过学习系统的非线性关系来实现控制。
与传统的控制方法相比,神经网络控制具有很强的适应性和鲁棒性。
3.智能控制智能控制是一种基于人工智能技术的控制方法,它通过引入专家系统、模糊逻辑、神经网络等多种技术来实现控制。
与传统的控制方法相比,智能控制具有更强的自适应性和智能性。
三、新型控制方法的应用1.机器人控制新型控制方法在机器人控制中的应用得到了广泛的关注。
通过引入模糊控制、神经网络控制、智能控制等技术,可以实现机器人的智能化、自适应化,并提高其操作效率和准确性。
2.工业生产新型控制方法在工业生产中的应用也越来越普遍。
通过引入模糊控制、神经网络控制、智能控制等技术,可以实现生产过程的自动化、智能化,并提高产品的质量和生产效率。
3.环境控制新型控制方法在环境控制中的应用也越来越广泛。
通过引入模糊控制、神经网络控制、智能控制等技术,可以实现环境的自动控制、节能减排,并保证环境的健康和安全。
四、总结新型控制方法的应用越来越广泛,已经成为现代控制技术的重要组成部分。
这些方法的引入,不仅有利于提高系统的自适应性和智能化,还可以提高生产效率、降低成本、增强产品的竞争力。
相信随着技术的不断发展,新型控制方法在各行各业的应用会越来越深入和广泛。
机器人控制系统的建模与仿真方法研究随着科技的不断进步,机器人技术的发展迅猛,机器人在各个领域的应用越来越广泛。
为了实现高效、稳定的机器人行为控制,建立准确的控制系统模型和进行仿真研究是至关重要的。
本文旨在探讨机器人控制系统的建模与仿真方法,介绍常用的建模方法,并分析仿真模型的建立及其应用。
一、机器人控制系统的建模方法1. 几何模型法几何模型法是一种常用的机器人控制系统建模方法。
该方法通过描述机器人的几何形状、关节结构和运动轨迹,建立机器人系统的几何模型。
常用的几何模型包括DH法、SDH法和Bishop法等。
其中,DH法是最经典的一种方法,通过参数化建立机器人的运动学模型,用于描述关节变量和坐标系之间的关系,从而实现机器人的运动规划和控制。
2. 动力学模型法动力学模型法是一种更加复杂而全面的机器人建模方法。
该方法基于牛顿运动定律和动力学原理,综合考虑机器人的质量、惯性、关节力矩和外力等因素,建立机器人系统的动力学模型。
动力学模型法可以更准确地描述机器人的运动和力学特性,对于复杂的机器人控制任务具有重要意义。
3. 状态空间模型法状态空间模型法是一种抽象程度较高、数学表达简洁的机器人控制系统建模方法。
该方法通过描述机器人系统的状态以及状态之间的转移规律,以矩阵的形式进行表示。
状态空间模型法适用于系统动态特性较强、多输入多输出的机器人系统,能够方便地进行控制器设计和系统分析。
二、机器人控制系统的仿真方法1. MATLAB/Simulink仿真MATLAB/Simulink是一种广泛应用于机器人控制系统仿真的工具。
Simulink提供了丰富的模块库和仿真环境,可以方便地构建机器人系统的仿真模型,并进行系统的可视化、实时仿真和参数调整。
通过Simulink,我们可以对机器人的运动学和动力学模型进行建模,并通过调整控制参数来优化机器人的控制性能。
2. 三维虚拟仿真三维虚拟仿真是一种直观、真实的机器人控制系统仿真方法。
复杂系统中的网络控制与鲁棒性分析随着科学技术的不断发展,复杂系统已经成为研究的热点之一。
复杂系统包括许多互相作用,并呈现非线性、异质性、时变性、随机性等特征的元素,以及这些元素之间的复杂网络结构。
同时,由于系统的复杂性,其行为往往难以预测,因此需要对系统进行控制和鲁棒性分析。
本文将从网络控制和鲁棒性分析两个方面来探讨复杂系统的研究进展。
一、网络控制1.网络控制的概念网络控制可定义为将控制器应用于网络系统中,以达到某种性能指标或目标的过程。
网络控制在复杂系统中具有广泛的应用,例如电力网络、交通网络、通信网络等,这些网络系统中节点之间的相互作用关系构成了网络拓扑结构,从而影响了系统的性能和稳定性。
网络控制一般包括传统控制理论和现代控制理论两个方面。
2.传统控制理论传统控制理论主要针对线性时不变系统的控制,它通过控制器的设计,对系统内的某些变量进行调节,使得系统的性能得到优化,例如稳定性、抗干扰性等。
该理论的局限性在于他们无法有效处理非线性和时变系统,因为这些系统的行为是复杂和不可预测的。
3.现代控制理论现代控制理论包括自适应控制、鲁棒控制、自适应鲁棒控制等。
这些理论针对非线性和时变系统,可以通过自适应性和鲁棒性来对系统进行控制。
4.网络控制的方法网络控制的方法包括:(1)分布式控制法,它通过将控制器放置在每个节点上以实现控制;(2)中央控制法,它将控制器放置在网络中央控制节点上;(3)混合控制法,它将中央控制法和分布式控制法结合起来实现了更好的控制效果。
二、鲁棒性分析1.鲁棒性的概念鲁棒性是指系统在面对外界干扰时不失控制的能力。
在面对各种变化情况时,鲁棒系统仍然能够保持系统性能,从而提高了系统的稳定性和可靠性。
2.鲁棒性分析的方法鲁棒性分析的方法包括:(1)参数不确定性分析,它是通过加入参数不确定性来评估系统鲁棒性;(2)故障分析,它是通过分析故障产生的原因以及研究故障后的补救措施来评估鲁棒系统的性能;(3)性能分析,通过模拟和分析系统运行过程中的性能指标来评价系统鲁棒性。
神经网络中的稳定性分析与鲁棒性改善近年来,神经网络在人工智能领域取得了巨大的突破,成为了许多任务的首选模型。
然而,与其广泛应用相伴随的是神经网络的不稳定性和对扰动的敏感性。
为了解决这个问题,研究人员们开始关注神经网络的稳定性分析和鲁棒性改善。
首先,我们来探讨神经网络的稳定性分析。
神经网络是由多个神经元组成的复杂系统,其稳定性分析是指在输入扰动下,网络输出的变化情况。
稳定性分析可以帮助我们了解网络对于不同输入的响应程度,进而评估网络的可靠性和性能。
稳定性分析的一个重要概念是鲁棒性。
鲁棒性指的是网络对于输入扰动的抵抗能力。
在现实应用中,网络往往需要面对各种噪声和干扰,鲁棒性的提高可以使网络更加稳定和可靠。
因此,研究人员们开始探索如何通过改进网络结构和训练方法来提高网络的鲁棒性。
一种常见的改进方法是引入正则化技术。
正则化技术可以通过约束网络的参数范围或者增加额外的惩罚项来减少过拟合现象,从而提高网络的鲁棒性。
例如,L1和L2正则化可以通过对网络参数进行稀疏化,减少不必要的特征,从而提高网络对于输入扰动的鲁棒性。
另一种改进方法是增加数据的多样性。
通过引入更多的训练样本或者进行数据增强,可以使网络更好地适应不同的输入扰动。
数据增强可以通过对原始数据进行旋转、平移、缩放等操作来生成更多的样本,从而提高网络的鲁棒性。
此外,生成对抗网络(GAN)也可以用于数据增强,通过生成具有扰动的样本来训练网络,提高鲁棒性。
除了改进网络结构和训练方法,还可以通过集成学习来提高网络的鲁棒性。
集成学习通过组合多个模型的预测结果,可以减少单个模型的误差,提高整体的鲁棒性。
例如,通过投票或者加权平均的方式,将多个网络的预测结果融合起来,可以减少由于单个网络的错误而引起的误判。
此外,对于神经网络的稳定性分析和鲁棒性改善,还可以从理论层面进行研究。
例如,通过数学模型和分析方法,可以推导出网络的稳定性条件和鲁棒性界限,从而指导网络设计和训练。
基于模型分块逼近的三关节机器人鲁棒滑模控制马莉丽;钟斌【摘要】三关节机器人结构参数、作业环境的外界干扰及结构振动等不确定因素均会造成其动力学模型不确定,导致机器人关节位置镇定或轨迹跟踪控制器的设计具有一定的难度。
为此,设计三个RBF(Radical Basis Function)神经网络分别对机器人不确定模型中的三个不确定项进行分块逼近,得到三个不确定项的估计信息,从而得出机器人估计模型,神经网络的权值采用适应算法。
针对机器人估计模型设计鲁棒滑模控制律,其中鲁棒项用于克服神经网络建模误差。
通过定义 Lya-punov函数,证明了控制系统是稳定的。
实验结果也表明了三关节均约在1 s时达到期望位置或跟踪期望轨迹,位置镇定误差或轨迹跟踪误差也快速、稳定地趋于零。
%Generally,the dynamic model of robot with three-j oint is undetermined due to three-j oint robot’s uncertain structure parameters,working environment’s external interfere and struc-tural vibration.Accordingly,it is difficult to control the robot’s joints’position stabilizing and traj ectory tracking and controller’s design due to the dynamic model’s uncertainty.Therefore, three designed RBF(Radical Basis Function)neural networks are used to respectively model the three undetermined terms of the undetermined robot dynamic model,with partition approxima-ting the three-joint robot.Three undetermined terms’estimation information is respectively ob-tained,with the robot’s estimation model obtained.The neural networks’weights are obtained through the adaptive algorithm.The robust sliding mode control law is designed based on the ro-bot’s estimation model.The control law’srobust term is used to overcome the neural networks’ modeling er ror.The control system’s stability is proved by defining Lyapunov function.The simulation experiments test verifies that three joints can trace ideal trajectory and reach an ideal position in 1 s,and stabilization error and tracking error can fast and stably approximate to zero.【期刊名称】《西安理工大学学报》【年(卷),期】2016(032)004【总页数】6页(P437-442)【关键词】三关节机器人;模型分块逼近;关节控制;RBF神经网络【作者】马莉丽;钟斌【作者单位】中国人民武装警察部队工程大学装备工程学院,陕西西安 710086;中国人民武装警察部队工程大学装备工程学院,陕西西安 710086【正文语种】中文【中图分类】TP242.2三关节机器人(以下简称机器人)结构紧凑,所占空间小,灵活性强,工作空间较大,避障性好,广泛应用于工业机器人中。
控制系统中的神经网络与智能控制技术在现代科技的发展中,控制系统扮演着重要的角色,它用于监测和管理各种工业和非工业过程。
随着技术的不断进步,控制系统也在不断提升。
神经网络和智能控制技术作为现代控制系统中的关键组成部分,正在被广泛研究和应用。
本文将重点探讨控制系统中神经网络和智能控制技术的应用和发展。
一、神经网络与控制系统神经网络是模拟人脑神经元网络结构和功能的数学模型,它能够通过学习和训练来逼近和模拟人脑的决策过程。
在控制系统中,神经网络可以用于处理和解决复杂的非线性控制问题。
通过神经网络的学习和适应能力,控制系统可以更好地应对不确定性和非线性特性。
1.1 神经网络在控制系统中的基本原理神经网络模型由多个神经元组成,这些神经元通过连接权重相互连接。
每个神经元将输入信号经过激活函数进行处理,产生输出信号,并传递给其他神经元。
通过调整连接权重和激活函数参数,神经网络可以逐步地优化输出结果,实现更精确的控制。
1.2 神经网络在控制系统中的应用神经网络在控制系统中有广泛的应用,例如在机器人控制、电力系统控制和交通管理等领域。
在这些应用中,神经网络能够通过学习和自适应的方式,提高系统的鲁棒性和稳定性,使得系统能够更好地适应不确定性和变动性。
二、智能控制技术智能控制技术是指结合人工智能和控制理论,用于设计和实现智能化的控制系统。
智能控制技术通过引入模糊逻辑、遗传算法和专家系统等,能够更好地适应动态和非线性控制问题。
2.1 智能控制技术的基本原理智能控制技术的核心思想是将人类专家的经验和知识转化为计算机程序,使得系统能够进行智能化的决策和控制。
通过建立模糊规则和使用遗传算法进行参数优化,智能控制系统能够自主学习和适应环境的变化,对于复杂的动态系统具有较好的控制性能。
2.2 智能控制技术的应用智能控制技术在工业自动化、机器人控制和交通管理等领域有着广泛的应用。
例如,在工业生产中,智能控制系统可以根据实时数据和模糊规则,自主地进行生产调度和质量控制;在交通管理中,智能控制系统可以根据交通流量和路况信息,优化信号配时和路线选择,提高交通效率和安全性。
机器人智能控制算法的系统鲁棒性评估与参数优化方法比较研究随着现代科技的不断发展,机器人已经成为了各个领域中不可或缺的一部分。
机器人的智能控制算法的质量直接关系到机器人的性能和安全性。
在实际应用中,机器人往往需要面对各种复杂和不确定的环境,在这样的环境中保持稳定可靠的工作是一个重要的挑战。
因此,评估机器人智能控制算法的系统鲁棒性,并通过参数优化方法进行提升,成为了当前研究的焦点。
系统鲁棒性是指机器人智能控制算法在面对外界干扰和系统参数变化时,仍然能够保持稳定并正确地完成任务的能力。
在评估系统鲁棒性时,一种常用的方法是模拟各种复杂情况和不确定性,如噪声干扰、传感器故障、执行器误动等,并通过对机器人的表现进行评估来判断算法的鲁棒性。
这样的评估方法能够更加真实地反映机器人在实际应用中可能面临的问题,帮助开发人员了解算法的限制和改进的空间。
对于机器人智能控制算法的参数优化方法来说,主要有两种常见的方法,即经验调参和优化算法。
经验调参是指通过开发人员的经验和直觉来调整算法中的参数值,以达到优化的效果。
这种方法简单直观,但对于复杂的算法来说,往往需要耗费大量的时间和精力。
而优化算法则通过数学和统计的方法,寻找最优的参数组合。
常见的优化算法包括遗传算法、粒子群算法等。
这些算法能够自动地搜索参数空间,并找到使机器人性能最优化的参数组合。
在对系统鲁棒性进行评估和参数优化时,需要注意以下几点。
首先,评估和优化的指标需要具体而明确,例如,可以通过机器人完成任务的成功率、响应时间、能耗等指标来评估和优化机器人的性能。
其次,在评估和优化过程中,需要尽可能模拟多样化的环境和情况,以找出机器人算法的弱点和改进的方向。
最后,评估和优化过程不是一次性的,而是一个持续迭代的过程。
通过不断地评估和优化,可以逐步提高机器人智能控制算法的系统鲁棒性和性能。
在进行机器人智能控制算法的系统鲁棒性评估和参数优化时,不同的方法有各自的优缺点。
经验调参方法简单直观,但对算法的理解和经验要求较高,而且通过试验来一次次调整参数,耗时耗力。