高一数学同步精品课堂(提升):专题3.1.2 用二分法求方程的近似解(测)(人教A版必修一)(含答案解析)
- 格式:doc
- 大小:170.00 KB
- 文档页数:4
公开课教案课题:§3.1.2 用二分法求方程的近似解【教学目标】1. 根据具体函数图象,能够借助计算器用二分法求相对应方程的近似解;2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 【教学重难点】教学重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点:精确度概念的理解,求方程近似解一般步骤的概括和理解 【教学过程】 (一)问题提出如何求所给方程的实数根? (2)237xx +=(函数有零点、方程有实数根、图像有交点三者的联系)(二)问题探究 1、猜价格游戏 思考:(1)如何才能以最快速度猜出它的价格?(2)利用猜价格的方法,你能否找出237xx +=的实数根?(持续的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点)2、新知借助计算器或计算机,利用二分法求方程237x x +=的近似解.(精确度0.1) 解析:如何进一步有效的缩小根所在的区间。
解:原方程即为0732=-+x x,令732)(-+=x x f x,用计算器或计算机作出对应的表格与图象(见课本90页)则0)1()2(<f f ,说明在区间)2,1(内有零点0x ,取区间)2,1(的中点5.1,用计数器计算得33.0)5.1(≈f ,因为0)5.1()1(<f f ,所以)5.1,1(0∈x .再取区间)5.1,1(的中点25.1,用计数器计算得87.0)25.1(-≈f ,因为0)5.1()1(<f f ,所以)5.1,25.1(0∈x .同理可得)5.1,375.1(0∈x )4375.1,375.1(0∈x 因为1.00625.04375.1375.1<=-,所以方程的近似解可取为.4375.1点评:利用同样的方法能够求方程的近似解。
(三)形成方法对于在区间[,]a b 上图像连续持续且()()f a f b <0的函数()y f x =,通过持续的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).反思:给定精度ε,用二分法求函数()f x 的零点近似值的步骤如何呢?2(1)260x x --=①确定区间[,]a b ,验证()()0f a f b <,给定精度ε; ②求区间(,)a b 的中点1x ;③计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);④判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤②~④.注意:研究二分法求方程的近似解问题,首先是通过估算,数形结合借助计算器、计算机等手段来确定一个零点所在的大致区间,区间长度应尽量小,否则会增加运算次数和运算量。
课题:3.1.2用二分法求方程的近似解教学设计一、教学内容分析本节选自《普通高中课程标准实验教科书·数学1》人教A版第三章第一节第二课,主要是研究函数与方程的关系的内容。
教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系。
然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图像和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面的体现函数与方程的关系,逐步建立起函数与方程的联系。
本节课是这一小节的第二节课,即用二分法求方程的近似解。
它以上节课的“连续函数的零点存在定理”为确定方程解所在区间为依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念。
本节课教学目的主要有两点:一是学习一种求方程近似解的简单常用方法,通过计算器操作,体验逐步逼近的思维过程;二是熟练掌握二分法求方程近似解的步骤,体会蕴含逼近思想与算法思想。
教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献。
二、学生学习情况分析学生已经学习了函数,理解函数零点和方程根的关系, 初步掌握函数与方程的转化思想。
但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难。
另外算法程序的模式化和求近似解对他们是一个全新的问题。
所以学生的认知困难主要表现在两个方面:一方面,学习本节课之前,对方程根的求解一直是以代数运算的方式来学习的,用二分法求方程的近似解,是一次思想方法上的突破和学习观念的提升;另一方面,由于学生第一次接触“逼近”这种数值计算中的专业术语,第一次接触隐含算法结构的用符号表示的步骤,这种语言形式的抽象性,造成学生理解上的困难。
(时间:25分,满分55分)
班级 姓名 得分
1.(5分)已知函数y =f (x )的图象如下图,其中零点的个数与可以用二分法求解的个数分别为( )
A .4,4
B .3, 4
C .5,4
D .4,3
【答案】D 【解析】
试题分析:题中图象与x 轴有4个交点,所以解的个数为4;左、右函数值异号的有3个零点,所以可以用二分法求解的个数为3,故选D. 考点:1、用二分法求方程的近似解.
2.(5分)下列函数中,有零点但不能用二分法求零点近似值的是( )
①y =3x 2
-2x +5;②y =⎩
⎪⎨⎪⎧
-x +1,x ≥0,x +1,x <0;③y =2
x +1,x ∈(-∞,0);④y =x 3-2x
+3;⑤y =1
2
x 2+4x +8.
A .①③
B .②⑤
C .⑤
D .①④
【答案】C
考点:1、用二分法求方程的近似解.
3.(5分)设f (x )=lg x +x -3,用二分法求方程lg x +x -3=0在(2,3)内近似解的过程中得f (2.25)<0,f (2.75)>0,f (2.5)<0,f (3)>0,则方程的根落在区间( )
A .(2,2.25)
B .(2.25,2.5)
C .(2.5,2.75)
D .(2.75,3)
【答案】C 【解析】
试题分析:因为f (2.25)<0,f (2.75)>0,由零点存在性定理知,在区间(2.25,2.75)内必有根,利用二分法得f (2.5)<0,由零点存在性定理知,方程的根在区间(2.5,2.75),选C. 考点:1、用二分法求方程的近似解.
4.(5分)某方程在区间(2,4)内有一实根,若用二分法求此根的近似值,将此区间分( )次后,所得近似值的精确度可达到0.1( )
A .2
B .3
C .4
D .5
【答案】D 【解析】
试题分析:等分1次,区间长度为1,等分2次,区间长度变为0.5,…,等分4次,区间长度变为0.125,等分5次,区间长度为0.0625<0.1,符合题意,故选D. 考点:1、用二分法求方程的近似解.
5.(5分)用二分法求函数的零点,经过若干次运算后函数的零点在区间(a ,b )内,当|a -b |<ε(ε为精确度)时,函数零点近似值x 0=a +b
2
与真实零点的误差最大不超过( )
A.ε4
B.ε
2 C .ε D .2ε 【答案】B 【解析】
试题分析:真实零点离近似值x 0最远即靠近a 或b ,而b -a +b 2=a +b 2-a =b -a 2=ε2,因此
误差最大不超过ε
2
.
考点:1、用二分法求方程的近似解.
6.(5分)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
A .1.2
B .1.3
C .1.4
D .1.5
【答案】C
考点:1、用二分法求方程的近似解.
7.(5分)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________.(填
区间)
【答案】(2,3)
【解析】
试题分析:因为f(2)·f(4)<0,f(2)·f(3)<0,所以f(3)·f(4)>0,故x0∈(2,3).
考点:1、用二分法求方程的近似解.
8.(5分)某同学在借助计算器求“方程lg x=2-x的近似解(精确度为0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在后边过程中,他又用“二分法”取了四个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的四个值依次是________.
【答案】1.5,1.75,1.875,1.8125
【解析】
试题分析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(17.5,1.875),第四次得区间(1.75,1.8125).
考点:1、用二分法求方程的近似解.
9.(5分)利用计算器,列出自变量和函数值的对应值如下表:
的值为________.
【答案】-1或-0.8
【解析】
试题分析:令f(x)=2x-x2,由表中的数据可得f(-1)<0,f(-0.6)>0;f(-0.8)<0,f(-0.4)>0,∴根在区间(-1,-0.6)与(-0.8,-0.4)内,∴a=-1或a=-0.8.
考点:1、用二分法求方程的近似解.
10.(10分)某娱乐节目有一个给选手在限定时间内猜一物品的售价的环节,某次猜一品牌手机的价格,手机价格在500~1000元,选手开始报价1000元,主持人回答高了;紧接着报900元,高了;700元,低了;800元,低了;880元,高了;850元,低了;851元,恭喜你猜中了.表面上看猜价格具有很大的碰运气的成分,实际上体现了“逼近”的思想,试设计出可行的猜价方案.
【答案】详见解析.
考点:1、用二分法求方程的近似解.。