数学中国中学生数学建模竞赛培训讲义xin
- 格式:ppt
- 大小:6.19 MB
- 文档页数:82
数学建模知识讲座教案模板精选一、教学内容本节课选自高中数学教材《数学建模》第五章第一节“数学建模的基本概念和方法”,内容包括数学建模的定义、分类、步骤以及常用的数学建模方法。
二、教学目标1. 了解数学建模的定义、分类和基本步骤,掌握常用的数学建模方法。
2. 能够运用所学知识解决实际问题,提高数学应用能力。
3. 培养学生的团队合作意识和创新精神。
三、教学难点与重点重点:数学建模的定义、分类、步骤和常用方法。
难点:如何运用所学知识解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、练习本、计算器。
五、教学过程1. 导入新课通过展示一个实际问题的案例,引导学生思考如何运用数学知识解决实际问题,从而引出数学建模的概念。
2. 基本概念(1)数学建模的定义:用数学语言和方法对现实世界中的问题进行抽象、简化和描述的过程。
(2)数学建模的分类:定性建模、定量建模、混合建模。
(3)数学建模的基本步骤:问题提出、分析研究、建立模型、求解模型、验证模型、应用模型。
3. 常用数学建模方法(1)差分法:将连续问题离散化,用差分方程描述。
(2)有限元法:将连续问题离散化,用有限元方法求解。
(3)回归分析法:根据已知数据,建立变量之间的回归方程。
(4)优化方法:求解最优化问题。
4. 实践情景引入给出一个实际问题的案例,让学生分组讨论,尝试运用所学知识建立数学模型。
5. 例题讲解讲解一个具体的数学建模例题,引导学生分析问题、建立模型、求解模型。
6. 随堂练习让学生独立完成一个数学建模练习题,巩固所学知识。
六、板书设计1. 定义、分类、步骤2. 常用数学建模方法3. 实践情景引入4. 例题讲解5. 随堂练习七、作业设计1. 作业题目:(1)运用差分法解决一个实际问题。
(2)运用回归分析法建立两个变量之间的回归方程。
2. 答案:(1)根据问题特点,建立差分方程。
(2)根据已知数据,求解回归方程。
八、课后反思及拓展延伸1. 反思:本节课通过实际案例引入数学建模的概念,让学生了解数学建模的基本步骤和常用方法,提高学生的数学应用能力。
数学中国国赛专题培训数学中国国赛专题培训(一)《数学建模思想方法大全及方法适用范围》主讲人:厚积薄发(冰强,Bruce Jan)第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)1.2聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模知识讲座精品教案模板精选一、教学内容本节课选自高中数学教材《数学建模》第四章第一节,详细内容主要围绕数学建模的基本概念、建模过程、模型类型及其在现实生活中的应用进行讲解。
通过学习,使学生了解数学建模的重要性,掌握基本的建模方法和技巧。
二、教学目标1. 知识与技能:了解数学建模的基本概念,掌握建模过程,学会运用不同的模型类型解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的团队协作和沟通能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生运用数学知识为社会服务的意识。
三、教学难点与重点教学难点:数学建模过程的理解和运用,不同模型类型的识别和应用。
教学重点:数学建模的基本概念,建模方法和技巧。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
五、教学过程1. 实践情景引入:通过展示现实生活中的实际问题,让学生感受数学建模的重要性,激发学习兴趣。
2. 知识讲解:(1)数学建模的基本概念;(2)数学建模的过程;(3)数学建模的模型类型;(4)数学建模在现实生活中的应用。
3. 例题讲解:讲解经典数学建模案例,引导学生分析问题、建立模型、解决问题。
4. 随堂练习:让学生分组讨论,针对实际问题建立数学模型,并给出解决方案。
六、板书设计1. 数学建模基本概念2. 数学建模过程3. 数学建模模型类型4. 数学建模应用案例七、作业设计1. 作业题目:针对课后习题,选择一道数学建模题目进行解答。
2. 答案要求:详细阐述解题过程,包括问题分析、模型建立、求解方法等。
八、课后反思及拓展延伸1. 反思:本节课学生对于数学建模概念的理解程度,以及在实际问题中的应用能力。
2. 拓展延伸:鼓励学生在课后查找相关资料,了解更多数学建模案例,提高自身建模能力。
同时,组织学生参加数学建模竞赛,提高实践操作能力。
重点和难点解析:1. 教学难点与重点的识别;2. 例题讲解的详细程度;3. 随堂练习的设计与实施;4. 作业设计的深度与广度;5. 课后反思及拓展延伸的实际操作。