2 0 2
2.设y y ( x)由方程xe f ( y ) e y ln 29确定, 其中f具有二阶导数且f 1,
d y ___ . 2 dx
2
3.设s 0, 求I n e x dx, (n 1,2,).
sx n 0
Page 10
4.求最小实数c, 使得满足 | f ( x) | dx 1的连续的
Page 11
f ( x) 6. f ( x)连续,g ( x) f ( xt )dx且 lim A, A 0 x 0 x 为常数,求g ( x)并讨论g ( x)在x 0处的连续性.
1
1 7.求方程x sin 2 x 501的近似解, (精确 x 到0.001).
x x
存在一点 x0使得f ( x0 ) 0. 证明:f ( x) 0在(,)恰有两实根。
11.设f ( x)在x 1点附近有定义,且在x 1 点可导,并已知f (1) 0, f (1) 2, f (sin 2 x cos x) 求 lim . 2 x 0 x x tan x
Page 15
14.设f ( x)在 x 0的某邻域内有二阶连续导数 且f (0), f (0), f (0)均不为零, 证明:存在唯一一组实数 k1 , k2 , k3 , k1 f (h) k2 f (2h) k3 f (3h) f (0) 使得 lim 0. 2 h 0 h
0
1
函数f ( x)都有 f ( x )dx c.
0
1
x 2t t 2 5.设函数y f ( x)由参数方程 (t 1)所 y (t ) d2y 3 确定,且 2 , 其中 (t )具有二阶导数, dx 4(1 t ) t2 3 u 2 曲线y (t )与y e du 在t 1处相切,求 1 2e 函数 (t ).