光的衍射圆孔(2014)
- 格式:ppt
- 大小:1002.00 KB
- 文档页数:15
圆孔的夫朗和费衍射1、圆孔的夫朗和费衍射:根据几何光学,平行光经过球面凸透镜后将会聚于透镜焦平面上一点。
但实际上,由于光的波动性,平行光经过小圆孔后也会产生衍射现象,称为圆孔的夫朗和费衍射。
圆孔的夫朗和费衍射图样为一个圆形的亮斑(称为爱里斑),在爱里斑的周围还有一组明暗相间的同心圆环。
由于光学仪器中所用的孔径光阑、透镜的边框等都相当于一个透光的圆孔,所以圆孔的夫朗和费衍射对光学系统的成像质量有直接影响。
爱里斑光强约占总光强的84% 。
而其1级暗环的角宽度(即爱里斑半角宽度)满足D 22.1R610.0sin 1λλθ==式中R 、D 为小圆孔的半径和直径。
2、光学仪器的分辨本领:由于圆孔衍射现象的限制,光学仪器的分辨能力有一个最高的极限。
下面通过光学仪器分辨本领的讨论,说明为什么有一个分辨极限,并给出分辨极限的大小。
当两个物点S 1、S 2很靠近时(设S 1、S 2光强相等),两个爱里斑将互相重叠而无法分辨。
对一个光学仪器来说,若一个点光源产生的爱里斑的中央刚好与另一个点光源产生的爱里斑瑞的1级暗环相重合,这时两个爱里斑重合部分的光强约为单个爱里斑中央光强的80%左右,一般人眼刚好能分辨出这是两个光点的像。
因此,满足上述条件的两个点光源恰好能被该光学仪器所分辨。
这一条件称为瑞利分辨判据。
(见下图)恰能分辨时两光源发出的光线对透镜光心的夹角Δθ 称为最小分辨角,用δθ表示。
由上讨论可知,最小分辨角δθ等于爱里斑的半角宽度θ1:)D 22.1arcsin(1λθδθ==尤其当θ1 ~ 0D 22.1λδθ≈(或称分辨率),用R 表示:λδθ22.1D 1R ==讨论:⑴ 增大透镜的直径D 可提高镜头的分辨率。
光学天文望远镜的镜头孔径可达数米! ⑵ 设r 、d 为爱里斑的半径和直径,则:f 2d f r D 22.1===λδθ即:D f44.2d λ=f D称为镜头的相对孔径(越大越好)。
如照相机镜头上所标示的502:1字样,即表示镜头的焦距mm 50f =,而镜头的孔径mm 25D =。
一、实验目的1. 理解光的衍射现象及其基本原理。
2. 掌握衍射光路的组装与调整,使用不同结构衍射屏实现夫琅禾费衍射现象。
3. 研究不同结构衍射屏的衍射光强分布,加深对衍射理论的理解。
二、实验原理圆孔衍射是光波通过圆形孔径后,由于波的波动性,光在孔径边缘发生弯曲,从而在远场屏上形成衍射图样。
实验基于惠更斯-菲涅尔原理,即每一个波前上的点都可以看作是一个次波源,这些次波源发出的波在空间中相互干涉,形成衍射图样。
夫琅禾费衍射是圆孔衍射的一种特殊形式,发生在远场区域,即孔径与观察屏之间的距离远大于孔径本身。
在这种情况下,光波经过圆孔后,衍射图样呈现出明暗相间的同心圆环,称为夫琅禾费衍射图样。
三、实验仪器1. He-Ne激光器2. 单缝及二维调节架3. 光电探测器及移动装置4. 数字式万用表5. 钢卷尺6. 圆孔衍射屏四、实验步骤1. 组装光路:将He-Ne激光器发出的激光束照射到圆孔衍射屏上,调节衍射屏与激光器之间的距离,使其满足夫琅禾费衍射条件。
2. 调整观察屏:将观察屏放置在衍射屏后,调节观察屏与衍射屏之间的距离,使其满足夫琅禾费衍射条件。
3. 测量光强分布:使用光电探测器测量不同位置的光强,记录数据。
4. 计算衍射图样:根据测量数据,绘制光强分布曲线,分析衍射图样的特征。
五、实验结果与分析1. 衍射图样:观察屏上出现了明暗相间的同心圆环,即夫琅禾费衍射图样。
图样的中央是一个亮斑,称为艾里斑,其大小与圆孔半径有关。
2. 光强分布:根据测量数据,绘制光强分布曲线。
曲线呈现出明暗相间的特征,中央亮斑的光强最大,随着距离的增加,光强逐渐减小。
3. 理论分析:将实验结果与理论计算结果进行对比,发现两者吻合良好。
六、实验结论1. 光的衍射现象是光的波动性的一种表现,通过实验验证了惠更斯-菲涅尔原理。
2. 夫琅禾费衍射是圆孔衍射的一种特殊形式,在远场区域出现明暗相间的同心圆环。
3. 通过实验,加深了对衍射理论的理解,掌握了衍射光路的组装与调整方法。
圆孔衍射实验报告圆孔衍射实验报告引言衍射是光学中的重要现象,指的是当光通过一个孔或者绕过一个物体时,光波会发生偏折和干涉,产生新的波纹和光斑。
圆孔衍射实验是研究光的衍射现象的经典实验之一。
本报告旨在详细介绍圆孔衍射实验的原理、实验装置和实验结果,并对实验结果进行分析和讨论。
实验原理圆孔衍射实验基于惠更斯-菲涅耳原理,即光波在传播过程中会沿着各个方向传播,并在传播的过程中发生干涉。
当光通过一个圆孔时,光波会在孔的边缘发生衍射,形成一系列的光环,称为菲涅耳衍射环。
这些衍射环的大小和形状与孔的大小和光的波长有关。
实验装置圆孔衍射实验的装置主要包括光源、圆孔、屏幕和测量仪器。
光源可以选择白光或单色光源,如激光。
圆孔通常由金属或者玻璃制成,直径可以调节。
屏幕用于接收和观察衍射光斑。
测量仪器可以是尺子、卡尺或者显微镜,用于测量光斑的直径和位置。
实验步骤1. 将光源放置在适当的位置,并调整光源的亮度和位置,使光线垂直照射到圆孔上。
2. 调节圆孔的直径,观察和记录不同直径下的衍射光斑。
3. 将屏幕放置在合适的位置,接收和观察衍射光斑。
4. 使用测量仪器测量光斑的直径和位置,并记录数据。
实验结果通过圆孔衍射实验,我们观察到了一系列的衍射光斑。
随着圆孔直径的增大,衍射光斑的直径也增大,但是衍射环的亮度和清晰度会减弱。
当圆孔直径非常小的时候,衍射光斑会呈现出明亮而清晰的环状结构。
而当圆孔直径逐渐增大时,衍射光斑会变得模糊,环状结构逐渐消失。
讨论与分析圆孔衍射实验的结果符合光的波动性质。
当光通过一个孔时,光波会沿着各个方向传播,并在传播的过程中发生干涉。
衍射光斑的大小和形状取决于孔的大小和光的波长。
当孔的直径非常小的时候,光波会在孔的边缘发生强烈的衍射,形成明亮而清晰的衍射环。
而当孔的直径逐渐增大时,衍射光斑的清晰度和亮度会减弱,因为光波的干涉效应逐渐减弱。
圆孔衍射实验还可以用来测量光的波长。
根据衍射光斑的直径和圆孔的直径,可以利用菲涅耳衍射公式计算出光的波长。
圆孔衍射现象描述概述解释说明1. 引言1.1 概述本篇长文旨在描述和解释圆孔衍射现象。
圆孔衍射是光学中的一种重要现象,当光通过一个小孔时会发生衍射,形成一个特定的光斑图案。
本文将从衍射现象的起因和原理、实验设备和方法等方面进行描述和概述。
1.2 文章结构本文分为五个主要部分:引言、圆孔衍射现象描述、结果与分析、应用与意义以及结论与展望。
其中,引言部分对文章的内容进行概述,介绍了文章的目的和结构。
1.3 目的本文旨在全面而详细地描述圆孔衍射现象,并解释其原理和机制。
通过对实验结果的观察和数据分析,探讨其中存在的差异,并探讨圆孔衍射在光学器件中的应用以及其对科学发展的意义。
最后,在总结研究结论的基础上提出未来研究方向建议,为进一步深入研究圆孔衍射提供指导。
2. 圆孔衍射现象描述:2.1 衍射现象简介圆孔衍射是一种光的传播现象,当光通过一个圆形孔径时发生偏折和扩散,形成特定的衍射图样。
这一现象是由光波在遇到障碍物或孔径较小时发生的干涉效应造成的。
圆孔衍射是光学中最基本且常见的几何衍射实验之一,对我们深入理解光的性质和行为具有重要意义。
2.2 圆孔衍射的起因和原理当平行光线垂直照射到一个小孔时,光波会从该小孔中穿过并呈球面传播。
根据背后的赫曼德-费米原理,每个次级波都可以看作是来自前方各个点上的波源。
这些次级波会相互干涉,并在进入观察屏幕后形成明暗相间、呈环状分布的衍射图样。
根据菲涅尔-柯西公式,我们可以计算出在观察屏上不同位置处的光强分布情况。
这个分布与外部条件(例如光源的波长、观察距离等)以及孔径的大小有关。
在圆孔衍射中,光强最强的环为中央亮斑,其内外依次是一系列交替的明暗环。
2.3 圆孔衍射实验设备和方法进行圆孔衍射实验通常需要准备以下设备和工具:1. 光源:可以使用激光器或白光灯作为照明光源。
2. 狭缝:用于产生平行光束,确保入射到圆孔上的光线是平行的。
3. 圆孔:可以通过刻蚀或机械加工在一片无色玻璃板上制作一个小而圆形的孔口。
实验10 圆孔衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
光的衍射现象是光的波动性的一种表现。
研究光的衍射现象不仅有助于加深对光本质的理解,而且能为进一步学好近代光学技术打下基础。
衍射使光强在空间重新分布,利用光电元件测量光强的相对变化,是测量光强的方法之一,也是光学精密测量的常用方法。
一、实验目的1.观察圆孔衍射现象,加深对衍射理论的理解。
2.会用光电元件测量圆孔衍射的相对光强分布,掌握其分布规律。
二、实验仪器H e -N e 激光器、单缝及二维调节架、光电探测器及移动装置、数字式万用表、钢卷尺等。
三、实验原理圆孔衍射的基础是惠更斯-菲涅尔原理,,经过计算可以得到:在沿光传播方向圆孔的中轴线上,总是光强极大(设平面光波沿圆孔轴线传播),偏开中轴线一定角度,诸子波相干叠加正好相消,则出现第一级暗线,由于圆孔激起子波的轴对称性,暗线将是暗环,再增大偏开轴线角度,可得到一系列暗环,暗环之间为亮环,即衍射次极大。
直径为D 的圆孔的夫琅和费衍射光强的径向分布可通过贝塞耳函数表示。
夫琅和费圆孔衍射图样的中央圆形(零级衍射)亮斑通常称为艾里斑,艾里斑的大小可用半角宽度即第一级暗环对应的衍射角为:D λθθ22.1sin ==圆孔衍射各极小值的位置(衍射角)在0.610π,1.116π,1.619π,… 处,各极大值的位置(衍射角)在0,0.0819π,0.133π,0.187π,… 处,其相对光强I/I0依次为1,0.0175,0.042,0.0016,…。
零级衍射的圆亮斑集中了衍射光能量的83.8% 。
夫琅和费衍射不仅表现在单缝衍射中,也表现在小孔的衍射中,如图10-1所示。
平行的激光束垂直地入射于圆孔光阑1上,衍射光束被透镜2会聚在它的角平面3上,若在此焦平面上放置一接收屏,将呈现出衍射条纹。
衍射条纹为同心圆,它集中了84%以上的光能量,P 点的光强分布为:()2102⎥⎦⎤⎢⎣⎡=x x J I I (10-1)()x J 1为一阶贝塞尔函数,它可以展开成x 的级数()()()1212!1!1+∞=⎪⎭⎫ ⎝⎛+-=∑k o k k x k k x J (10-2)x 可以用衍射角θ及圆孔半径a 表示θλπsin 2ax = (10-3) 式中λ是激光波长(e e N H —激光器8.623=λ纳米)。
光的衍射1.定义:光通过很小的狭缝(或圆孔)时,明显地偏离了直线传播的方向,在屏上应该出现阴影的区域出现明条纹或亮斑,应该属于亮区的地方也会出现暗条纹或暗斑的现象。
2.衍射图像:衍射时产生的明暗条纹或光环。
3.单缝衍射:单色光通过狭缝时,在屏幕上出现明暗相间的条纹,中央为亮条纹,中央条纹最宽最亮,其余条纹变窄变暗;白光通过狭缝时,在屏上出现彩色条纹,中央为白条纹。
特点:(1)中央条纹最亮,越向两边越暗;条纹间距不等,中央条纹最宽,两边条纹宽度变窄。
(2)缝变窄通过的光变少,而光分布的范围更宽,所以亮条纹的亮度降低。
(3)中央亮条纹的宽度及条纹间距跟入射光的波长及单缝宽度有关,入射光波长越大,单缝越窄,中央亮条纹的宽度及条纹间距就越大。
(4)用白光做单缝衍射时,中央亮条纹是白色的,两边是彩色条纹,中央亮条纹仍然最宽最亮。
4.圆孔衍射(1)圆孔衍射:如图13-5-1甲所示,当挡板AB上的圆孔较大时,光屏上出现图乙所示的圆形亮斑(光的直线传播);减小圆孔,光屏上出现光源的像(小孔成像);当圆孔很小时,光屏上出现图丙所示的亮、暗相间圆环(衍射图样)。
图13-5-1(2)圆孔衍射的图样特征:①单色光的圆孔衍射图样:中央亮圆的亮度大,外面是明暗相间的不等距的圆环;越向外,圆(亮)环亮度越低。
②白光的圆孔衍射图样:中央亮圆为白色,周围是彩色圆环。
5.泊松亮斑:障碍物的衍射现象。
在单色光传播途中,放一个较小的圆形障碍物,会发现在阴影中心有一个亮斑,这就是著名的泊松亮斑。
(1)各种不同形状的障碍物都能使光发生衍射,致使影的轮廓模糊不清,若在单色光(如激光)传播途中放一个较小的圆形障碍物,会发现在影的中心有一个亮斑,这就是著名的泊松亮斑。
(2)形成泊松亮斑时,圆板阴影的边缘是模糊的,在阴影外还有不等间距的明暗相间的圆环。
(3)周围的亮环或暗环间距随半径增大而减小。
二、衍射光栅1.衍射光栅的结构由许多等宽的狭缝等距离地排列起来形成的光学仪器。