理想流体有旋无旋流动共79页文档
- 格式:ppt
- 大小:6.80 MB
- 文档页数:79
理想不可压缩流体的有旋流动和无旋流动7-1 试证明极坐标中的不可压缩流体平面流动的旋转角速度为)1(21θωθθ∂∂-+∂∂=r z v r r v r v7-2 已知流场的速度分布为(1)yxy v y x x v y x 22,422--=-+=; (2)y x v x z v z x v z y x +=+=+=,,;(3)0,/=-=θv r k v r ;(4)θθθθ2sin 2,cos sin 2r v r v r -== 试确定:(1)流动是否连续;(2)流动是否有旋。
[连续,有旋;连续,无旋;连续,无旋;连续,有旋]7-3 不可压缩流体平面势流的流函数为1032+-+=y x xy ψ,试求其速度势。
[y x y x 232/)(22---=ϕ] 7-4 不可压缩流体平面势流的速度势为 x y x +-=22ϕ,试求其流函数。
[y xy +=2ψ] 7-5 已知有旋流动的速度场为,32,32,32y x v x z v z y v z y x +=+=+= 试求旋转角速度、角变形速度和涡线方程。
[z y x z y x z y x =========;2/5;3,2/12/1γγγωωωω]7-6 已知流场的速度分布为(1)x v x =, y v y -=;(2)x y x v x +-=22, )2(y xy v y +-=;(3)θcos )/11(2r v r -=,θθsin )/11(2r v +-= 试确定:(1)流动是否有势;(2)它们的速度势和流函数。
[有势,2/)(22y x -=ϕ,xy =ψ;有势,223)2/1(2/3/y x x x +-+=ϕ,y x x y )(3/23++-=ψ;有势,θϕcos )/11(2r r +=,θψsin )/11(2r r -=] 7-7 已知流场的流函数为(1)xy =ψ;(2)22y x -=ψ试确定:(1)二流场是否有势,若有势,求出速度势;(2)通过点)3,2(A 和点)7,4(B 的任意曲线的流量和沿该线的切向速度线积分。