气体吸收习题+答案
- 格式:doc
- 大小:557.50 KB
- 文档页数:20
第七章 吸 收7-1 总压101.3 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用,通过实验测定其亨利系数E 为4.13 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。
(溶液密度近似取为1000kg/m 3)解:溶质在液相中的摩尔分数:50640.01391000501864x ==+ 二氧化硫的平衡分压:*34.13100.0139kPa=57.41kPa p Ex ==⨯⨯相平衡常数:634.1310Pa40.77101.310PaE m P ⨯===⨯7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数),求填料塔出口水溶液中硫化氢的最大浓度。
已知塔内温度为20℃,压强为1.52×105 Pa ,亨利系数E 为48.9MPa 。
解:相平衡常数为:6548.910321.711.5210E m P ⨯===⨯ 硫化氢的混合气进口摩尔浓度:15340.04305953429y ==+若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即:41max 0.0430 1.3410321.71y x m -===⨯7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。
(1)含NO 2 0.003(摩尔分率)的水溶液和含NO 2 0.06 (摩尔分率) 的混合气接触,总压为101.3kPa ,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =1.68×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。
解:(1)相平衡常数为:51311.6810Pa 1.658101.310Pa E m P ⨯===⨯ *1 1.6580.0030.00498y m x ==⨯=由于 *y y >,所以该过程是吸收过程。
气体吸收(化工原理)习题及答案气液平衡1.在常压、室温条件下,含溶质的混合气的中,溶质的体积分率为10%,求混合气体中溶质的摩尔分率和摩尔比各为多少?解:当压力不太高,温度不太低时,体积分率等于分摩尔分率,即y=0.10根据 y-1y Y =,所以0.110.1-1 0.1Y == 2.向盛有一定量水的鼓泡吸收器中通入纯的CO 2气体,经充分接触后,测得水中的CO 2平衡浓度为2.875×10-2kmol/m 3,鼓泡器内总压为101.3kPa ,水温30℃,溶液密度为1000 kg/m 3。
试求亨利系数E 、溶解度系数H 及相平衡常数m 。
解:查得30℃,水的kPa 2.4=s pkPa 1.972.43.101*=-=-=s A p p p稀溶液:3kmol/m 56.55181000==≈S M c ρ421017.556.5510875.2--⨯=⨯==c c x A kPa 10876.11017.51.9754*⨯=⨯==-x p E A )m kmol/(kPa 1096.21.9710875.2342*⋅⨯=⨯==--A Ap c H 18543.10110876.15=⨯==p E m 3.在压力为101.3kPa ,温度30℃下,含CO 2 20%(体积分率)空气-CO 2混合气与水充分接触,试求液相中CO 2的摩尔浓度、摩尔分率及摩尔比。
解:查得30℃下CO 2在水中的亨利系数E 为1.88×105kPaCO 2为难溶于水的气体,故溶液为稀溶液 kPa)kmol/(m 1096.2181088.11000345⋅⨯=⨯⨯==-S SEM H ρ kPa 3.2033.10120.0*A =⨯==yp p334*km ol/m 1001.63.201096.2--⨯=⨯⨯==A A Hp c 18523.1011088.15=⨯==p E m 4-101.0818520.20m y x ⨯=== 4-4--4101.08101.081101.08x -1x X ⨯=⨯⨯=-= 4.在压力为505kPa ,温度25℃下,含CO 220%(体积分率)空气-CO 2混合气,通入盛有1m 3水的2 m 3密闭贮槽,当混合气通入量为1 m 3时停止进气。
第五章 吸收气液平衡1、向盛有一定量水的鼓泡吸收器中通入纯的CO 2气体,经充分接触后,测得水中的CO 2平衡浓度为2.875×10-2kmol/m 3,鼓泡器内总压为101.3kPa ,水温30℃,溶液密度为1000 kg/m 3。
试求亨利系数E 、溶解度系数H 及相平衡常数m 。
解:查得30℃,水的kPa 2.4=s p kPa 1.972.43.101*=-=-=s Ap p p稀溶液:3kmol/m 56.55181000==≈SM c ρ421017.556.5510875.2--⨯=⨯==c c x A kPa 10876.11017.51.9754*⨯=⨯==-x p E A )m kmol/(kPa 1096.21.9710875.2342*⋅⨯=⨯==--AA p c H18523.10110876.15=⨯==p E m 2、在压力为101.3kPa 的吸收器内用水吸收混合气中的氨,设混合气中氨的浓度为0.02(摩尔分数),试求所得氨水的最大物质的量浓度。
已知操作温度20℃下的相平衡关系为x p 2000*A =。
解:混合气中氨的分压为kPa 03.233.10102.0A =⨯==yp p与混合气体中氨相平衡的液相浓度为3A *1002.120003..22000-⨯===p x 33*A *kmol/m 0564.01810001002.1=⨯==-c x c 3、在压力为101.3kPa ,温度30℃下,含CO 220%(体积分数)空气-CO 2混合气与水充分接触,试求液相中CO 2的物质的量浓度。
解:查得30℃下CO 2在水中的亨利系数E 为1.88×105kPa CO 2为难溶于水的气体,故溶液为稀溶液 kPa)kmol/(m 1096.2181088.11000345⋅⨯=⨯⨯==-SSEM H ρ kPa 3.2033.10120.0*A =⨯==yp p334*km ol/m 1001.63.201096.2--⨯=⨯⨯==A A Hp c 4、含CO 230%(体积分数)空气-CO 2混合气,在压力为505kPa ,温度25℃下,通入盛有1m 3水的2 m 3密闭贮槽,当混合气通入量为1 m 3时停止进气。
第四部分气体吸收一、填空题1.物理吸收操作属于传质过程。
理吸收操作是一组分通过另一停滞组分的单向扩散。
2.操作中的吸收塔,若使用液气比小于设计时的最小液气比,则其操作结果是达不到要求的吸收分离效果。
3.若吸收剂入塔浓度X2降低,其它操作条件不变,吸收结果将使吸收率增大。
4.若吸收剂入塔浓度X2降低,其它操作条件不变,则出口气体浓度降低。
5.含SO2为10%(体积)的气体混合物与浓度c为0.02 kmol/m3的SO2水溶液在一个大气压下相接触。
操作条件下两相的平衡关系为p*=1.62c (大气压),则SO2将从气相向液相转移。
6.含SO2为10%(体积)的气体混合物与浓度c为0.02 kmol/m3的SO2水溶液在一个大气压下相接触。
操作条件下两相的平衡关系为p*=1.62c (大气压),以气相组成表示的传质总推动力为0.0676 atm 大气压。
7.总传质系数与分传质系数之间的关系为l/K L=l/k L+H/k G,其中l/k L为液膜阻力。
8.总传质系数与分传质系数之间的关系为l/K L=l/k L+H/k G,当气膜阻力H/k G 项可忽略时,表示该吸收过程为液膜控制。
9.亨利定律的表达式之一为p*=Ex,若某气体在水中的亨利系数E值很大,说明该气体为难溶气体。
10.亨利定律的表达式之一为p*=Ex,若某气体在水中的亨利系数E值很小,说明该气体为易溶气体。
11.低浓度气体吸收中,已知平衡关系y*=2x,k x a=0.2 kmol/m3.s,k y a =2 l0-4 kmol/m3.s,则此体系属气膜控制。
12.压力增高,温度降低,将有利于吸收的进行。
13.某操作中的吸收塔,用清水逆流吸收气体混合物中A组分。
若y1下降,L、V、P、T等不变,则回收率减小。
14.某操作中的吸收塔,用清水逆流吸收气体混合物中A组分。
若L增加,其余操作条件不变,则出塔液体浓度降低。
15.吸收因数A 在Y-X 图上的几何意义是 操作线斜率与平衡线斜率之比 。
第六章 吸收习题参考答案(注:红色字体标注部分对教材所给答案进行了修正,请核查)【6-1】 含有8%(体积分数)22C H 的某种混合气体与水充分接触,系统温度为20℃,总压为101.3kPa 。
试求达平衡时液相中22C H 的物质的量浓度。
解:混合气体按理想气体处理,则22C H 在气相中的分压为101.30.088.104p p y kPa kPa ==⨯=总22C H 为难溶于水的气体,故气液平衡关系符合亨利定律,并且溶液的密度可按纯水的密度计算。
查得20℃水的密度为ρ=998.23/kgm 。
由 *Ac Hp =, SH EM ρ=故 *ASpc EM ρ=查表8-1可知,20℃时22C H 在水中的亨利系数E=1.23⨯510kPa ,故 *333A5998.28.104/ 3.65410/1.231018c kmol m kmol m -⨯==⨯⨯⨯ 【6-2】 总压为101.3 kPa ,温度为20 ℃的条件下,使含二氧化硫为3.0%(体积分数)的混合空气与含二氧化硫为3503/gm 的水溶液接触。
试判断二氧化硫的传递方向,并计算以二氧化硫的分压和液相摩尔分数表示的总传质推动力。
已知操作条件下,亨利系数E=3.55310⨯kPa ,水溶液的密度为998.2kg/3m 。
解:由道尔顿分压定律101.30.03 3.039p p y kPa kPa ==⨯=总液相摩尔分数为(溶液近似按纯水计算):0.35640.0000986998.218x ==稀溶液符合亨利定律,所以:*33.55100.00009860.35p Ex kPa ==⨯⨯=p >p *,二氧化硫由气相向液相传递,进行吸收过程。
用气相分压表示的总推动力为:3.0390.35 2.689p p kPa *-=-=与气相浓度相平衡的液相平衡浓度:33.0390.0008563.5510p x E *===⨯ 用液相摩尔分数表示的总推动力为:0.0008560.00009860.0007574x x *-=-=【6-3】 在某填料塔中用清水逆流吸收混于空气的2CO ,空气中2CO 的体积分数为8.5%,操作条件为15℃、405.3kPa ,15℃时2CO 在水中的亨利系数为1.24510⨯kPa ,吸收液中2CO 的组成为411.6510x -=⨯。
第八章 气体吸收1. 在温度为40 ℃、压力为101.3 kPa 的条件下,测得溶液上方氨的平衡分压为15.0 kPa 时,氨在水中的溶解度为76.6 g (NH 3)/1 000 g(H 2O)。
试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。
解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+ 由 *p Ex =亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为 t 200.0 1.974101.3E m p === 由于氨水的浓度较低,溶液的密度可按纯水的密度计算。
40 ℃时水的密度为992.2ρ=kg/m 3溶解度系数为 kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2. 在温度为25 ℃及总压为101.3 kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。
试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。
已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8 kg/m 3。
解:水溶液中CO 2的浓度为 33350/1000kmol/m 0.008kmol/m 44c == 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318c ==kmol/m 3 水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯ 由 54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa < *p故CO 2必由液相传递到气相,进行解吸。
以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3. 在总压为110.5 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。
吸收一章习题及答案一、填空题1、用气相浓度△y为推动力的传质速率方程有两种,以传质分系数表达的速率方程为____________________,以传质总系数表达的速率方程为___________________________。
N A = k y (y-y i) N A = K y (y-y e)2、吸收速度取决于_______________,因此,要提高气-液两流体相对运动速率,可以_______________来增大吸收速率。
双膜的扩散速率减少气膜、液膜厚度3、由于吸收过程气相中的溶质分压总 _________ 液相中溶质的平衡分压,所以吸收操作线总是在平衡线的_________。
增加吸收剂用量,操作线的斜率_________,则操作线向_________平衡线的方向偏移,吸收过程推动力(y-y e)_________。
大于上方增大远离增大4、用清水吸收空气与A的混合气中的溶质A,物系的相平衡常数m=2,入塔气体浓度y =0.06,要求出塔气体浓度y2 = 0.006,则最小液气比为_________。
1.805、在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将_________,操作线将_________平衡线。
减少靠近6、某气体用水吸收时,在一定浓度范围内,其气液平衡线和操作线均为直线,其平衡线的斜率可用_________常数表示,而操作线的斜率可用_________表示。
相平衡液气比7、对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的H OG将_________,N OG 将_________ (增加,减少,不变)。
不变增加8、吸收剂用量增加,操作线斜率_________,吸收推动力_________。
(增大,减小,不变)增大增大9、计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:_________、_________、_________。
5.5 习题精选5-1 当压力不变时,温度提高1倍,溶质在气相中的扩散系数提高 2.83 倍;假设某液相黏度随温度变化很小,绝对温度降低1倍,则溶质在该液相中的扩散系数降低 1倍。
5-2 等分子反向扩散适合于描述精馏过程;单向扩散适合描述吸收和解吸过程。
5-3 双组份理想气体进行单向扩散。
当总压增加时,若维持溶质A在气相各部分分压不变,传质速率将减少;温度提高,则传质速率将增加;气相惰性组分摩尔分率减少,则传质速率将增加。
5-4 常压、25℃低浓度的氨水溶液,若氨水浓度和压力不变,而氨水温度提高,则亨利系数E 增加,溶解度系数H 减小,相平衡常数m 增加,对吸收过程不利。
5-5 常压、25℃低浓度的氨水溶液,若氨水上方总压增加,则亨利系数E 不变,溶解度系数H 不变,相平衡常数m 减少,对解吸过程不利。
5-6 常压、25℃密闭容器内装有低浓度的氨水溶液,若向其中通入氮气,则亨利系数E 不变,溶解度系数H 不变,相平衡常数m 减少,气相平衡分压不变。
5-7含5%(体积分率)二氧化碳的空气-二氧化碳混合气,在压力为101.3kPa,温度为25℃下,与浓度为1.1×10-3kmol/m3的二氧化碳水溶液接触,已知相平衡常数m为1641,则CO2从气相向液转移,以液相摩尔分率表示的传质总推动力为 1.07×10-5 。
5-8填料吸收塔内,用清水逆流吸收混合气体中的溶质A,操作条件下体系的相平衡常数m为3,进塔气体浓度为0.05(摩尔比),当操作液气比为4时,出塔气体的极限浓度为 0 ;当操作液气比为2时,出塔液体的极限浓度为 0.0167 。
5-9 难溶气体的吸收过程属于液膜控制过程,传质总阻力主要集中在液膜侧,提高吸收速率的有效措施是提高液相流体的流速和湍动程度。
5-10在填料塔内用清水吸收混合气体中的NH3,发现风机因故障输出混合气体的流量减少,这时气相总传质阻力将增加;若因故清水泵送水量下降,则气相总传质单元数不变。
化工原理-- 吸收习题及答案吸收一章习题及答案一、填空题1 、用气相浓度△ y为推动力的传质速率方程有两种,以传质分系数表达的速率方程为______________________ ,以传质总系数表达的速率方程为N A = ky (y-yi ) N A = Ky (y-ye )2 、吸收速度取决于________________ ,因此,要提高气-液两流体相对运动速率,可以_______________ 来增大吸收速率。
双膜的扩散速率减少气膜、液膜厚度3 、由于吸收过程气相中的溶质分压总____________ 液相中溶质的平衡分压,所以吸收操作线总是在平衡线的__________ 。
增加吸收剂用量,操作线的斜率___________ ,则操作线向_________ 平衡线的方向偏移,吸收过程推动力(y -y e )_____________ 。
大于上方增大远离增大4 、用清水吸收空气与A的混合气中的溶质A,物系的相平衡常数m=2入塔气体浓度y = 0.06 ,要求出塔气体浓度y 2 = 0.006 ,则最小液气比为_____________ 。
1.805 、在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将_________ 操作线将__________ 平衡线。
减少靠近6 、某气体用水吸收时,在一定浓度范围内,其气液平衡线和操作线均为直线,其平衡线的斜率可用_________ 常数表示,而操作线的斜率可用___________ 表示。
相平衡液气比7 、对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的H OG 将________ N OG 将__________ (增加,减少,不变)。
不变增加8 ____________________________________ 、吸收剂用量增加,操作线斜率吸收推动力。
(增大,减小,不变)增大增大9 、计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算: ______________ 、________ 、________ 。
第七章吸收习题解答(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第七章 吸 收7-1 总压 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用,通过实验测定其亨利系数E 为 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。
(溶液密度近似取为1000kg/m 3) 解:溶质在液相中的摩尔分数:50640.01391000501864x ==+ 二氧化硫的平衡分压:*34.13100.0139kPa=57.41kPa p Ex ==⨯⨯ 相平衡常数:634.1310Pa 40.77101.310PaE m P ⨯===⨯7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数),求填料塔出口水溶液中硫化氢的最大浓度。
已知塔内温度为20℃,压强为×105 Pa ,亨利系数E 为。
解:相平衡常数为:6548.910321.711.5210E m P ⨯===⨯ 硫化氢的混合气进口摩尔浓度:15340.04305953429y ==+若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即: 41max 0.0430 1.3410321.71y x m -===⨯7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。
(1)含NO 2 (摩尔分率)的水溶液和含NO 2 (摩尔分率) 的混合气接触,总压为,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。
解:(1)相平衡常数为:51311.6810Pa 1.658101.310Pa E m P ⨯===⨯ *1 1.6580.0030.00498y m x ==⨯=由于 *y y >,所以该过程是吸收过程。
第五章吸收相组成的换算【5-1】 空气和CO 2的混合气体中,CO 2的体积分数为20%,求其摩尔分数y 和摩尔比Y 各为多少?解 因摩尔分数=体积分数,.02y =摩尔分数 摩尔比 ..020251102y Y y ===--. 【5-2】 20℃的l00g 水中溶解lgNH 3, NH 3在溶液中的组成用摩尔分数x 、浓度c 及摩尔比X 表示时,各为多少?解 摩尔分数//117=0.010*******/18x =+浓度c 的计算20℃,溶液的密度用水的密度./39982s kg m ρ=代替。
溶液中NH 3的量为 /311017n kmol -=⨯ 溶液的体积 /.33101109982 V m -=⨯溶液中NH 3的浓度//.33311017==0.581/101109982n c kmol m V --⨯=⨯ 或 . 3998200105058218s sc x kmol m M ρ==⨯=../ NH 3与水的摩尔比的计算 或 ..00105001061100105x X x ===--. 【5-3】进入吸收器的混合气体中,NH 3的体积分数为10%,吸收率为90%,求离开吸收器时NH 3的组成,以摩尔比Y 和摩尔分数y 表示。
吸收率的定义为解 原料气中NH 3的摩尔分数0.1y = 摩尔比 (11101)01111101y Y y ===-- 吸收器出口混合气中NH 3的摩尔比为 摩尔分数 (22200111)=0010981100111Y y Y ==++ 气液相平衡【5-4】 l00g 水中溶解lg 3 NH ,查得20℃时溶液上方3NH 的平衡分压为798Pa 。
此稀溶液的气液相平衡关系服从亨利定律,试求亨利系数E(单位为kPa )、溶解度系数H[单位为/()3kmol m kPa ⋅]和相平衡常数m 。
总压为100kPa 。
解 液相中3NH 的摩尔分数/.//1170010511710018x ==+气相中3NH 的平衡分压 *.0798 P kPa = 亨利系数 *./.0798*******E p x ===/液相中3NH 的浓度 /./.333110170581 101109982n c kmol m V --⨯===⨯/ 溶解度系数 /*./../()3058107980728H c p kmol m kPa ===⋅ 液相中3NH 的摩尔分数 //1170010511710018x ==+./气相的平衡摩尔分数 **.0798100y p p ==// 相平衡常数 * (079807610000105)y m x ===⨯ 或 //.76100076m E p ===【5-5】空气中氧的体积分数为21%,试求总压为.101325kPa ,温度为10℃时,31m 水中最大可能溶解多少克氧?已知10℃时氧在水中的溶解度表达式为*.6331310p x =⨯,式中*p 为氧在气相中的平衡分压,单位为kPa x ;为溶液中氧的摩尔分数。
5.5 习题精选5-1 当压力不变时,温度提高1倍,溶质在气相中的扩散系数提高 2.83 倍;假设某液相黏度随温度变化很小,绝对温度降低1倍,则溶质在该液相中的扩散系数降低 1倍。
5-2 等分子反向 扩散适合于描述精馏过程;单向扩散 适合描述吸收和解吸过程。
5-3 双组份理想气体进行单向扩散。
当总压增加时,若维持溶质A 在气相各部分分压不变,传质速率将 减少 ;温度提高,则传质速率将 增加 ;气相惰性组分摩尔分率减少,则传质速率将 增加 。
5-4 常压、25℃低浓度的氨水溶液,若氨水浓度和压力不变,而氨水温度提高,则亨利系数E 增加 ,溶解度系数H 减小 ,相平衡常数m 增加 ,对 吸收 过程不利。
5-5 常压、25℃低浓度的氨水溶液,若氨水上方总压增加,则亨利系数E 不变 ,溶解度系数H 不变 ,相平衡常数m 减少 ,对 解吸 过程不利。
5-6 常压、25℃密闭容器内装有低浓度的氨水溶液,若向其中通入氮气,则亨利系数E 不变 ,溶解度系数H 不变 ,相平衡常数m 减少 ,气相平衡分压 不变 。
5-7含5%(体积分率)二氧化碳的空气-二氧化碳混合气,在压力为101.3kPa ,温度为25℃下,与浓度为1.1×10-3kmol/m 3的二氧化碳水溶液接触,已知相平衡常数m 为1641,则CO 2从 气 相向 液 转移,以液相摩尔分率表示的传质总推动力为 1.07×10-5。
5-8填料吸收塔内,用清水逆流吸收混合气体中的溶质A ,操作条件下体系的相平衡常数m 为3,进塔气体浓度为0.05(摩尔比),当操作液气比为4时,出塔气体的极限浓度为 0 ;当操作液气比为2时,出塔液体的极限浓度为 0.0167 。
5-9 难溶气体的吸收过程属于 液膜 控制过程,传质总阻力主要集中在 液膜 侧,提高吸收速率的有效措施是提高 液 相流体的流速和湍动程度。
5-10在填料塔内用清水吸收混合气体中的NH 3,发现风机因故障输出混合气体的流量减少,这时气相总传质阻力将 增加 ;若因故清水泵送水量下降,则气相总传质单元数 不变 。
6-1 已知在101.3 kPa(绝对压力下),100 g 水中含氨1 g 的溶液上方的平衡氨气分压为987 Pa 。
试求:(1) 溶解度系数H (kmol ·m -3·Pa -1); (2) 亨利系数E(Pa); (3) 相平衡常数m ;(4) 总压提高到200 kPa(表压)时的H ,E ,m 值。
(假设:在上述范围内气液平衡关系服从亨利定律,氨水密度均为10003/m kg )解:(1)根据已知条件Pa p NH 987*3=3/5824.01000/10117/13m kmol c NH ==定义333*NH NH NH H c p =()Pa m kmol p c H NH NH NH ∙⨯==-34/109.5333(2)根据已知条件可知0105.018/10017/117/13=+=NH x根据定义式333*NH NH NH x E p =可得Pa E NH 41042.93⨯=(3)根据已知条件可知00974.0101325/987/**33===p p y NH NH于是得到928.0333*==NH NH NH x y m(4)由于H 和E 仅是温度的函数,故3NH H 和3NH E 不变;而p E px Ex px p x y m ====**,与T 和p 相关,故309.0928.031'3=⨯=NH m 。
分析(1)注意一些近似处理并分析其误差。
(2)注意E ,H 和m 的影响因素,这是本题练习的主要内容之一。
6-2 在25℃下,CO 2分压为50 kPa 的混合气分别与下述溶液接触:(1) 含CO 2为0.01 mol/L 的水溶液; (2) 含CO 2为0.05 mol/L 的水溶液。
试求这两种情况下CO 2的传质方向与推动力。
解: 由亨利定律得到*2250CO CO Ex kPa p == 根据《 化工原理》 教材中表 8-1 查出()kPa E CO 51066.1252⨯=℃ 所以可以得到4*1001.32-⨯=CO x 又因为()()34525/10347.3181066.11000222m kPa kmol EM H OH OH CO ∙⨯=⨯⨯=≈-ρ℃ 所以得34*/0167.05010347.3222m kmol p H c CO CO CO =⨯⨯==- 于是:(1)为吸收过程,3/0067.0m kmol c =∆。
第八章 气体吸收1. 在温度为40 ℃、压力为101.3 kPa 的条件下,测得溶液上方氨的平衡分压为15.0 kPa 时,氨在水中的溶解度为76.6 g (NH 3)/1 000 g(H 2O)。
试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。
解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+ 由 *p E x =亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为 t 200.0 1.974101.3E m p === 由于氨水的浓度较低,溶液的密度可按纯水的密度计算。
40 ℃时水的密度为992.2ρ=kg/m 3溶解度系数为kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2. 在温度为25 ℃及总压为101.3 kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。
试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。
已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8 kg/m 3。
解:水溶液中CO 2的浓度为33350/1000kmol/m 0.008kmol/m 44c == 对于稀水溶液,总浓度为 3t 997.8k m o l /m 55.4318c ==kmol/m 3 水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯ 由 54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa < *p故CO 2必由液相传递到气相,进行解吸。
以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3. 在总压为110.5 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。
1.最小液气比(L/V)min只对()(设计型,操作型)有意义,实际操作时,若(L/V)﹤(L/V)min ,产生结果是()。
答:设计型吸收率下降,达不到分离要求2.相平衡常数m=1,气膜吸收系数k y=1×10-4Kmol/(m2.s),液膜吸收系数 k x 的值为k y 的100倍,这一吸收过程为()控制,该气体为()溶气体,气相总吸收系数K Y=() Kmol/(m2.s)。
(天大97)答:气膜易溶 9.9×10-43.某一吸收系统,若1/k y 》1/k x,则为气膜控制,若 1/k y《1/k x,则为液膜控制。
(正,误)。
答:错误,与平衡常数也有关。
4.气体吸收计算中,表示设备(填料)效能高低的一个量是传质单元高度,而表示传质任务难易程度的一个量是传质单元数。
5在吸收塔某处,气相主体浓度y=0.025,液相主体浓度x=0.01,气相传质分系数k y=2kmol/m2·h,气相传质总K y=1.5kmol/m2·h,则该处气液界面上气相浓度y i应为⎽⎽0.01⎽⎽⎽。
平衡关系y=0.5x。
6 根据双膜理论,当被吸收组分在液相中溶解度很小时,以液相浓度表示的总传质系数 B 。
A大于液相传质分系数 B 近似等于液相传质分系数C小于气相传质分系数 D 近似等于气相传质分系数7 对一定操作条件下的填料吸收塔,如将填料层增高一些,则塔的H OG将⎽⎽⎽C⎽⎽⎽,N OG将⎽⎽A⎽⎽⎽⎽。
A 增大B 减小C 不变D 不能判断8 吸收塔的设计中,若填料性质及处理量(气体)一定,液气比增加,则传质推动力 A ,传质单元数 B ,传质单元高度 C ,所需填料层高度 B 。
A 增大B 减小C 不变D 不能判断9.含SO2为10%(体积)的气体混合物与浓度C= 0.02 Kmol/m3的SO2水溶液在一个大气压下接触,操作条件下两相的平衡关系为 p*=1.62 C (大气压),则 SO2将从()相向()转移,以气相组成表示的传质总推动力为()大气压,以液相组成表示的传质总推动力为()Kmol/m3 。
第五章 吸收气液平衡1、向盛有一定量水的鼓泡吸收器中通入纯的CO 2气体,经充分接触后,测得水中的CO 2平衡浓度为2.875×10-2kmol/m 3,鼓泡器内总压为101.3kPa ,水温30℃,溶液密度为1000 kg/m 3。
试求亨利系数E 、溶解度系数H 及相平衡常数m 。
解:查得30℃,水的kPa 2.4=s p kPa 1.972.43.101*=-=-=s Ap p p稀溶液:3kmol/m 56.55181000==≈SM c ρ421017.556.5510875.2--⨯=⨯==c c x A kPa 10876.11017.51.9754*⨯=⨯==-x p E A )m kmol/(kPa 1096.21.9710875.2342*⋅⨯=⨯==--AA p c H18523.10110876.15=⨯==p E m 2、在压力为101.3kPa 的吸收器内用水吸收混合气中的氨,设混合气中氨的浓度为0.02(摩尔分数),试求所得氨水的最大物质的量浓度。
已知操作温度20℃下的相平衡关系为x p 2000*A =。
解:混合气中氨的分压为kPa 03.233.10102.0A =⨯==yp p与混合气体中氨相平衡的液相浓度为3A *1002.120003..22000-⨯===p x 33*A *kmol/m 0564.01810001002.1=⨯==-c x c 3、在压力为101.3kPa ,温度30℃下,含CO 220%(体积分数)空气-CO 2混合气与水充分接触,试求液相中CO 2的物质的量浓度。
解:查得30℃下CO 2在水中的亨利系数E 为1.88×105kPa CO 2为难溶于水的气体,故溶液为稀溶液 kPa)kmol/(m 1096.2181088.11000345⋅⨯=⨯⨯==-SSEM H ρ kPa 3.2033.10120.0*A =⨯==yp p334*km ol/m 1001.63.201096.2--⨯=⨯⨯==A A Hp c 4、含CO 230%(体积分数)空气-CO 2混合气,在压力为505kPa ,温度25℃下,通入盛有1m 3水的2 m 3密闭贮槽,当混合气通入量为1 m 3时停止进气。
经长时间后,将全部水溶液移至膨胀床中,并减压至20kPa ,设CO 2 大部分放出,求能最多获得CO 2多少kg ?。
设操作温度为25℃,CO 2 在水中的平衡关系服从亨利定律,亨利系数E 为1.66×105kPa 。
解:Ex p =*A (1)x p 5*A 1066.1⨯=气相失去的CO 2物质的量=液相获得的CO 2物质的量x cV RTV p p L G=-)(*A Ax p ⨯⨯=⨯⨯-⨯1181000298314.81)5053.0(*Ax p 56.551004.40612.0*A 4=⨯-- (2)(1)与(2)解得:4105-⨯=x减压后: 8300201066.15=⨯==p E m 411102.183001-⨯===m y x 稀溶液: 18/100044/W X x =≈x W 2444=kg 2.110524444=⨯⨯=-W kg 29.0102.1244441=⨯⨯=-Wkg 91.029.02.1=-=∆W5、用清水逆流吸收混合气中的氨,进入常压吸收塔的气体含氨6%(体积),吸收后气体出口中含氨0.4%(体积),溶液出口浓度为0.012(摩尔比),操作条件下相平衡关系为X Y 52.2*=。
试用气相摩尔比表示塔顶和塔底处吸收的推动力。
解:064.006.0106.01111=-=-=y y Y 03024.0012.052.252.21*1=⨯==X Y 00402.0004.01004.01222=-=-=y y Y 0052.252.22*2=⨯==X Y塔顶: 00402.000402.0*222==-=∆Y Y Y 塔底: 034.003024.0064.0*111=-=-=∆Y Y Y6、在操作条件25℃、101.3kPa 下,用CO 2含量为0.0001(摩尔分数)的水溶液与含CO 210%(体积分数)的CO 2-空气混合气在一容器充分接触,试:(1)判断CO 2的传质方向, 且用气相摩尔分数表示过程的推动力;(2))设压力增加到506.5kPa ,CO 2的传质方向如何,并用液相分数表示过程的推动力。
解:(1)查得25℃、101.3kPa 下CO 2-水系统的E =166MPa 16391013.0166===p E m 164.00001.01639*=⨯==mx y*10.0y y y <=所以CO 2的传质方向由液相向气相传递,解吸过程。
解吸过程的推动力为064.010.0164.0*=-=-=∆y y y(2)压力增加到506.5kPa 时,7.3275065.0166''===p E m 4'*1005.37.32710.0-⨯===m y x 4101-⨯=xx x >*所以CO 2的传质方向由气相向液相传递,吸收过程。
吸收过程的推动力为444*1005.21011005.3---⨯=⨯-⨯=-=∆x x x由上述计算结果可以看出:当压力不太高时,提高操作压力,由于相平衡常数显著地提高,导致溶质在液相中的溶解度增加,故有利于吸收。
扩散与单相传质7、某容器内装有2mm 四氯化碳,在20℃的恒定温度下逐渐蒸发,通过近似不变的2mm 静止空气层扩散到大气中,设静止的空气层以外的四氯化碳蒸气压为零,已知20℃、大气压为101.3kPa 下,四氯化碳通过空气层的扩散系数为1.0×10-5m 2/s 。
求容器内四氯化碳蒸干所需时间为多少小时? 解:查得20℃下四氯化碳饱和蒸气压为32.1kPa ;密度为1540 kg/m 3; 四氯化碳分子量M A =154kg/kmol ; 气相主体中空气(惰性组分)的分压kPa 2.691.323.101A1B1=-=-=p p p气液界面上的空气(惰性组分)的分压kPa 3.101A2B2=-=p p p四氯化碳的气化速率为τρhM A A 扩散速率为B1B2A ln p p RTz DpN =定态传质时,四氯化碳的气化速率等于其在空气中的扩散速率,即B1B2A ln p p RTz DpN ==τρh M A A h 07.04.2522.693.101ln 3.1011011541540002.0002.0293314.8ln512==⨯⨯⨯⨯⨯⨯⨯⨯==-s p p Dp M h RTz B B A A ρτ 8、在填料吸收塔内用水吸收混合于空气中的甲醇,已知某截面上的气、液两相组成为p A =5kPa ,c A =2kmol/m 3,设在一定的操作温度、压力下,甲醇在水中的溶解度系数H 为0.5 kmol/(m 3·kPa),液相传质分系数为k L =2×10-5m/s ,气相传质分系数为k G =1.55×10-5kmol/(m 2·s·kPa)。
试求以分压表示吸收总推动力、总阻力、总传质速率、及液相阻力的分配。
解:以分压表示吸收总推动力 kPa 45.02A *A ===H c p kPa 145*A A =-=-=∆A p p p 总阻力kPa)/kmols (m 1065.11045.61011055.111025.01111254555⋅⋅⨯=⨯+⨯=⨯+⨯⨯=+=--GL G k Hk K总传质速率s)kmol/(m 1008.611065.1/1)(265*⋅⨯=⨯⨯=-=-A A G A p p K N液相阻力的分配%6.60606.01065.11011155==⨯⨯=GL K Hk 由计算结果可以看出此吸收过程为液相传质阻力控制过程。
9、对习题8的过程,若吸收温度降低,甲醇在水中的溶解度系数H 变为5.8 kmol/(m 3·kPa),设气、液相传质分系数与两相浓度近似不变,试求液相阻力分配为多少?并分析其结果。
吸收温度降低时总传质阻力kPa)/kmols (m 1031.71045.6106.81055.111028.51111244355⋅⋅⨯=⨯+⨯=⨯+⨯⨯=+=--GL G k Hk K液相阻力的分配%76.111176.01031.7106.81143==⨯⨯=GL K Hk 由液相阻力占吸收过程总阻力的11.76%,可知此吸收过程为气相传质阻力控制过程。
吸收过程设计型计算10、用20℃的清水逆流吸收氨-空气混合气中的氨,已知混合气体温度为20℃,总压为101.3 kPa ,其中氨的分压为1.0133 kPa ,要求混合气体处理量为773m 3/h ,水吸收混合气中氨的吸收率为99%。
在操作条件下物系的平衡关系为X Y 757.0*=,若吸收剂用量为最小用的2倍,试求(1)塔内每小时所需清水的量为多少kg ?(2)塔底液相浓度(用摩尔分数表示)。
解:(1) 01.00133.13.1010133.11=-==B A p p Y 412101)99.01(01.0)1(-⨯=-=-=ηY Ykmol/h 8.31)01.01(4.22293273773=-⨯⨯=Vkmol/h 8.230757.001.0)0001.001.0(8.312*121min =--=--=X X Y Y VL 实际吸收剂用量L =2L min =2×23.8=47.6kmol/h =856.8 kg/h (2) X 1 = X 2+V (Y 1-Y 2)/L =0+0066.06.47)0001.001.0(8.31=-11、在一填料吸收塔内,用清水逆流吸收混合气体中的有害组分A ,已知进塔混合气体中组分A 的浓度为0.04(摩尔分数,下同),出塔尾气中A 的浓度为0.005,出塔水溶液中组分A 的浓度为0.012,操作条件下气液平衡关系为X Y 5.2*=。
试求操作液气比是最小液气比的倍数?解:0417.004.0104.01111=-=-=y y Y 005.0005.01005.01222=-=-=y y Y0121.0012.01012.01111=-=-=x x X 2.2)0417.0005.01(5.2)1(121212*121min =-=-=-=--=⎪⎭⎫ ⎝⎛Y Y m mY Y Y X X Y Y V L03.300121.0005.00417.02121=--=--=X X Y Y V L 38.12.203.3/min ==⎪⎭⎫ ⎝⎛V L V L 12、用SO 2含量为1.1×10-3(摩尔分数)的水溶液吸收含SO 2为0.09(摩尔分数)的混合气中的SO 2。