20年6月西南大学高等代数【0158】大作业(参考答案)
- 格式:doc
- 大小:51.00 KB
- 文档页数:1
西南大学网络与继续教育学院课程代码: 0044 学年学季:20192单项选择题1、. 2. 0. 1. -12、. 0,1,2,3. 1,2,3,4. 0,1,2. 1,2,33、下列各向量组线性相关的是( ).....4、.. ..5、....6、....7、. E. ...8、....9、下列矩阵为正交矩阵的是( ).....10、矩阵A 与B 相似, 则下列说法不正确的是( ). style="text-indent:32px">A 与B 有相同的特征值. ..A = B.. R(A) = R(B) 11、....12、....13、... .14、. F. A 的列向量组线性无关. 线性方程组的增广矩阵的任意四个列向量线性无关. 线性方程组的增广矩阵的列向量组线性无关 .线性方程组的增广矩阵的行向量组线性无关15、下列各向量组线性相关的是( ).....16、. .. .17、.负定的. ..正定的...半正定的... style="text-indent:14px;line-height:150%">不定的..18、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关19、. 0. 1.. 0或1..20、.A....21、. 2 .4..122、. C. 必有一列向量可有其余列向量线性表示. 必有两列元素对应成比例. 任一列向量是其余列向量的线性组合 .必有一列元素全为023、.D. A 有n 个互异特征值.A 是实对称阵. A 有n 个线性无关的特征向量.A 的特征向量两两正交24、. B. A 的行向量组线性相关 . A 的行向量组线性无关. A 的列向量组线性无关.A 的列向量组线性无关25、在下列矩阵中,可逆的是( ).....判断题 26、.A.√. B.× 27、. A.√. B.× 28、. A.√. B.× 29、.A.√. B.× 30、. A.√. B.× 31、. A.√. B.× 32、. A.√. B.× 33、. A.√. B.× 34、. A.√. B.× 35、. A.√. B.× 36、. A.√. B.× 37、. A.√. B.× 38、. A.√. B.× 39、. A.√. B.× 40、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×41、转置运算不改变方阵的行列式、秩和特征值. ( ). A.√. B.×42、若A x =0只有零解,则A x =b(b≠0)有唯一解. ( ). A.√. B.×43、. A.√. B.×44、. A.√. B.×45、. A.√. B.×46、. A.√. B.×47、. A.√. B.×48、设A、B为n阶方阵,且AB=0,但 |A| 0,则B=0.( ). A.√. B.×49、. A.√. B.×50、. A.√. B.×主观题51、正确答案是:52、正确答案是:53、正确答案是:254、正确答案是:55、正确答案是:56、正确答案是:57、正确答案是:58、正确答案是:59、正确答案是:60、正确答案是:。
西南大学网络与继续教育学院课程考试试题卷
类别:网教2020年5月
课程名称:数学教育学(方法论)【0350】
A卷大作业满分:100 分
要答案:wangjiaofudao
一、简述题(共计30分)
1. 简述教学评价对数学教学的功能。
(10分)
2. 简述数学教学原则中的“渗透数学思想方法原则”(20分)
二、实践与综合运用题(共计70分)
(一)选择以下知识点之一(共计30分)
分数的概念(小学)
平方差公式(初中)
函数的单调性(高中)
(1)分析教材,指出该知识点渗透了哪些数学思想方法(10分)
(2)分析学生学习该知识点的思维障碍或者容易出现的典型错误及原因(10分)(提示:该知识点的“思维障碍”与“典型错误”可选择其中之一进行分析), (3)提出相应的教学策略(10分)
(没有固定评分标准,根据回答情况酌情给分)(二)根据所提出的教学策略,设计简要的教学过程(40分)
答题提示:教学过程设计具有整体性,各环节衔接自如,结构紧凑;在渗透数学思想方法、突破学生思维障碍或纠正典型错误上与上述(一)的回答有一定的联系。
(没有固定评分标准,根据回答情况酌情给分)。
===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
1、设多项式f(x)|g(x),c是一个非零常数,则cf(x)|g(x)。
. A.√.2、一个齐次线性方程组的两个解向量的和仍是该方程组的一个解向量。
. A.√.3、设A是n阶矩阵,若非齐次线性方程组AX=B无解,则|A|=0。
. A.√.4、设A是可逆矩阵,交换A的第一行和第二行得矩阵B,则B也是可逆矩阵。
. A.√.5、设是线性空间V的两个子空间,若。
. B.×6、设W是线性空间V的子空间,。
. A.√.7、设A是n阶矩阵,|A|=0,E是n阶单位矩阵,则|A+E|=1。
.B.×8、若多项式g(x)|f(x),则g(x)为f(x)与g(x)的一个最大公因式。
. A.√.9、如果一个向量组线性相关,那么它的任一部分组也线性相关。
. B.×10、设为一个向量组,由于,所以线性无关。
. B.×11、如果一个二次型是正定的,那么它的函数值恒大于零。
. B.×12、数域P上两个不可约多项式的积一定是可约多项式。
. A.√.13、如果两个n阶矩阵的秩相同,那么它们一定合同。
. B.×14、设为一个向量组,若,则线性相关。
. A.√.1317、设A为矩阵,B为矩阵,则AB的列数等于。
418、在向量组中,,则的秩等于。
219、20、若2为f(x)的根,且2是的5重根,则2为f(x)的重根。
621、设,则f(x)的所有系数的和等于。
322、若,则c= 。
-123、设为对称矩阵,则a= 。
324、若矩阵不可逆,则a= 。
-4 25、3阶行列式 。
-126、计算题.doc1.计算下面的4阶行列式的值: 1111211312254321D -=。
2.设43232()341,()1f x x x x x g x x x x =+---=+--,求((),())f x g x 。
3.设A = 033110123⎛⎫ ⎪ ⎪ ⎪-⎝⎭,且2AB A B =+,求矩阵B 。
西南大学网络与继续教育学院课程考试试题卷类别:网教2020年5月课程名称【编号】:数学课程标准解读【0692】A卷大作业满分:100 分要答案:wangjiaofudao简答题(10分)(注意:本题二选一)1 《普通高中数学课程标准(2017 年版)》提出的“四基”是什么,谈谈对其的认识。
2 《普通高中数学课程标准(2017 年版)》的核心价值取向是什么。
论述题(40分)(注意:本题二选一)1 如何认识高中核心素养数学抽象的内涵与价值,请谈谈如何培养和评价数学抽象素养?2 如何认识高中核心素养直观想象的内涵与价值,请谈谈如何培养和评价数学抽象素养?实践题(50分)《普通高中数学课程标准(2017 年版)》颁布,其中一个显著特点将培养和提升学生的数学核心素养作为数学教育的总目标。
请以下面材料完成一篇教学设计并说明如何体现课程标准的理念。
函数的概念【目的】理解基于对应关系的函数概念,感悟函数概念进一步抽象的必要性。
【情境】在高中函数概念的教学中,为什么要强调函数是实数集合之间的对应关系?【分析】初中学习的函数概念表述为:如果在一个变化过程中有两个变量和,对于变量的每一个值,变量都有唯一的值与它对应,那么称是的函数。
它强调的是用函数描述一个变化过程。
例如,在匀速直线运动中(速度为),路程随着时间的变化而变化,因此路程是时间的函数,记为。
再如,在单价、数量、总价的关系中,总价随着数量的变化而变化,因此总价是数量的函数,记为,通常把这样的表述称为函数的“变量说”。
但是,上述两个函数自变量的单位不同,不能进行加、减等运算。
若舍去其具体背景进一步抽象,可以得到一般的正比例函数为非零常数。
于是,两个正比例函数就可以进行运算了,所得结果还是一般的函数。
到了高中,函数的概念表述为:给定两个非空实数集合A和B,以及对应关系f,若对于集合A中的每一个实数,集合B中有唯一实数与对应,则称为集合A上的函数,这个概念更强调实数集与实数集间的对应关系,通常把这样的表述成为函数的“对应关系说”。
西南大学培训与继续教育学院课程一、单项选择题(本大题共15小题,每道题4.0分,共60.0分)1.设()且,则在处 ( )A..B..C..D..2.函数在处( )A.不连续B.连续不可导C.连续且仅有一阶导数D.连续且有二阶导数3.曲线在点处切线斜率等于( )A.8B.12C.-6D.64.设时,与是同阶无穷小,则为( )A.1B.2C.3D.45.设在处可,则( )A..B..C..D..6.函数的反函数是( )A..B..C..D..7.设有二阶连续导数,且,则 ( )A..B..C..D..8.两个无穷小量与之积仍是无穷小量,且与或相比( )A.是高阶无穷小B.是同阶无穷小C.可能是高阶,也可能是同阶无穷小D.与阶数较高的那阶同阶9.若在区间上二次可微,且,,(),则方程在上 ( )A.没有实根B.有重实根C.有无穷多个实根D.有且仅有一个实根10.任意给定,总存在,当时,,则( )A..B..C..D..11.设在上有定义,函数在点左、右极限都存在且相等是函数在点连续的( )A.充分条件B.充分且必要条件C.必要条件D.非充分也非必要条件12.设在内连续,且,则在点处( )A..B..C..D..13.已知函数在任意点处的增量且当时,是的高阶无穷小,,则( )A..B..C..D..14.下列函数中在上满足拉格朗日定理条件的是( )A..B..C..D..15.在下列四个函数中,在上满足罗尔定理条件的函数是( )A..B..C..D..二、计算题(本大题共4小题,每道题5.0分,共20.0分)1.2.求下列函数的自然定义域3.4.求在点(1, 2)处的偏导数三、证明题(本大题共1小题,每道题20.0分,共20.0分) 1.。
《高等代数》习题与参考答案数学系第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
学生:
面积s是时间t的函数,因为对于每一个确定的t值,都有唯一确定的一个面积s跟它对应。
教师:好,那我给你一个具体的时间t,你怎么得到与之相对应的面积?
学生:根据图像。
教师:那你能说出1991对应的面积吗?
学生:20。
教师:前面实例中的对应关系是用解析式表示的,那这个实例中的对应关系也得用一个解析式表示吗?
学生:不用。
教师:那我们如何记录这个对应关系呢?
由学生思考,教师启发得出用图像记录这个对应关系。
教师:好,那是不是对任何一个时间,通过图像,都有面积跟它对应呢?
学生:不是,对于2001
1979~之间的每一个时间,都有唯一的面积跟它相对应。
0158 20191判断题1、一个线性变换的两个不变子空间之和仍是它的不变子空间。
1. A.√2. B.×2、线性空间上的线性变换是单射当且仅当是它满射。
1. A.√2. B.×3、数域P上任何非零多项式的次数都大于零.1. A.√2. B.×4、一个3次实系数多项式至少有一个实根。
1. A.√2. B.×5、与对称矩阵合同的矩阵一定是对称矩阵。
1. A.√2. B.×6、两个有限维线性空间同构的充要条件是它们的维数相等。
1. A.√2. B.×7、交换正交矩阵的任意两列所得到的矩阵仍是正交矩阵。
1. A.√2. B.×8、A为n阶方阵,若A的行列式不等于0,则A一定可逆。
1. A.√2. B.×9、数域P上n阶方阵在初等行变换之下行列式的值不变.1. A.√2. B.×10、欧式空间中保持向量夹角不变的线性变换是正交变换。
1. A.√2. B.×11、若两个向量组的秩相等,则这两个向量组一定等价.1. A.√2. B.×12、若n阶方阵A和B的特征多项式相同, 则A与B相似.1. A.√2. B.×13、对任意实数a,向量(a,0,1)与向量(-1,1,a)都是线性无关的.1. A.√2. B.×14、n维线性空间V中任意n个线性无关的向量都是V的基.1. A.√2. B.×15、如果两个n阶矩阵相似,那么它们一定合同。
1. A.√2. B.×主观题16、高等代数第一次作业.doc参考答案:高等代数第一次作业参考答案.doc17、高等代数第二次作业.doc参考答案:高等代数第二次作业参考答案.doc18、高等代数第三次作业.doc参考答案:高等代数第三次作业参考答案.doc。