保守力的功和电势能的关系
- 格式:doc
- 大小:159.50 KB
- 文档页数:4
静电力做功和电势能的关系静电力是指由于电荷之间的相互作用而产生的力。
当两个带电体之间存在电荷差异时,它们之间就会产生静电力。
而静电力在物理学中是一种保守力,意味着它可以通过做功来改变电荷之间的位置关系。
静电力的大小与电荷之间的距离和电荷的大小有关。
根据库仑定律,两个电荷之间的静电力与它们的电荷量成正比,与它们之间的距离的平方成反比。
当两个电荷之间的距离越近,静电力就越大;当电荷量越大,静电力也越大。
当一个电荷受到静电力作用而沿某个方向移动时,静电力就对它做了功。
功是物理学中描述能量转化的概念,它表示力对物体的作用所产生的能量转移。
在这种情况下,静电力通过对电荷的作用使其具有了动能或势能。
电势能是指电荷由于位置而具有的能量。
在静电场中,电荷具有电势能,这是由于它与其他电荷之间的静电力相互作用所导致的。
当电荷从一个位置移动到另一个位置时,它的电势能会发生改变。
在静电场中,电势能的改变与电荷的移动路径无关,只与电荷的初始位置和最终位置有关。
根据电势能的定义,当电荷受到静电力作用而沿着力的方向移动时,它的电势能会减小。
换句话说,静电力对电荷做了负功,将电势能转化为了动能。
反之,当电荷受到静电力作用而与力的方向相反移动时,它的电势能会增加。
这时,静电力对电荷做了正功,将动能转化为了电势能。
总结起来,静电力对电荷做功,改变了电荷的位置关系,使其具有了动能或势能。
静电力和电势能之间的关系可以通过考虑电荷之间的相互作用和电荷的移动来理解。
静电力是一种保守力,它对电荷做的功可以转化为电势能,反之亦然。
这种关系在静电场中起着重要的作用,有助于我们理解电荷之间的相互作用和能量转化的过程。
值得注意的是,静电力做的功和电势能的改变是相互关联的,它们之间存在着数学上的联系。
具体来说,静电力做的功等于电势能的负改变。
这是由于功和电势能都是标量,且它们之间的关系可以通过数学公式来描述。
然而,为了遵守要求,本文不提供公式和具体计算方法。
势能函数与保守力的关系势能函数与保守力的关系势能函数和保守力是两个重要的物理概念,它们之间有着密切的关系。
势能函数描述了物体所处的位置的势能大小,而保守力则是指一类物理力,其做功与物体所经过的路径无关。
在本文中,我们将探讨势能函数与保守力之间的关系。
首先,我们需要了解什么是势能函数。
如果一个物体在场中的位置发生了变化,那么它的势能也会发生变化。
在一定条件下,物体的势能与位置之间存在一种确定的数学关系,这种关系就是势能函数。
在物理中,势能函数常常用U(x)来表示,其中X是物体的位置。
其次,我们需要明白什么是保守力。
保守力是指其做功与路径无关的力,也就是说,无论物体经历了怎样的路径,保守力所做的功都是相同的。
在物理中,保守力常常被描述为一类势力,它们的势能变化与位置之间存在确定的数学关系。
接着,我们来看一下势能函数与保守力之间的关系。
势能函数与保守力之间存在着一种紧密的联系,也就是说,如果一个力是保守力,那么它所描述的势能函数一定存在。
反之亦然,如果一个势能函数存在,那么它所描述的力一定是保守力。
这是因为在物理中,只有保守力才能描述为一类势力,保守力的存在必然导致势能函数的存在。
同样的,势能函数的存在也必然说明描述这种情形的力是保守力。
此外,我们还需要了解,保守力的势能函数在很多方面都是唯一的。
也就是说,对于一个特定的保守力,存在着唯一一个势能函数可以描述它,并且这个势能函数的形式是确定的。
这是由保守力的基本特性所决定的。
总结一下,势能函数与保守力之间存在着密切的关系。
保守力可以描述为一类势力,保守力的存在必然导致势能函数的存在。
同样的,势能函数的存在也必然说明所描述的力是保守力。
在大多数情况下,保守力的势能函数都是唯一的,这是由保守力的基本特性所决定的。
深入了解势能函数与保守力之间的关系有助于我们更好地理解物理学的基本概念,进一步提高我们的学术水平。
浅议物理学中的保守力和势能【摘要】保守力和势能在物理学中扮演着重要的角色。
保守力是指不依赖路径的力,其所做的功与路径无关。
势能则是对保守力的一种描述,是可用于确定力学系统状态的函数。
保守力和势能之间存在着密切的关系,一般通过势能函数来确定。
根据保守力和势能的关系,我们可以推导出机械能守恒定律,即在只受保守力的情况下,力学系统的机械能保持不变。
保守力和非保守力的区别在于是否可以用势能来描述。
保守力和势能的重要性体现在它们对力学系统的描述和分析中起到了关键作用,而在物理学中也有着广泛的应用。
为了更深入地理解和探索保守力和势能,未来的研究方向可能会集中在更复杂系统下的运用和拓展。
【关键词】保守力、势能、物理学、性质、关系、确定、守恒定律、区别、重要性、应用、未来研究方向。
1. 引言1.1 保守力的基本概念保守力是物理学中一个非常重要的概念,它在描述物体运动和相互作用过程中起着至关重要的作用。
保守力是一种在物体运动中所做的功与路径无关的力,即对于沿着任意闭合路径作功的保守力,总是零。
这意味着保守力对物体的位移所做的功只依赖于起点和终点,而与具体路径无关。
保守力的基本概念包括以下几个要点:1. 保守力与势能的关系:保守力可以用势能来描述和计算。
势能是对物体在某个力场中位置所储存的能量,而保守力则是通过势能的梯度来定义和推导的。
具体来说,对于一个保守力F,其对应的势能函数为U,满足F = -∇U。
这里的负号表示力是势能的负梯度方向,即力的方向指向势能减小的方向。
2. 势能的引入:为了便于描述和计算保守力对物体的作用,我们引入了势能这一概念。
势能可以是位置的函数,也可以是速度和其他物理量的函数。
通过引入势能,我们可以将关于保守力的问题转化为寻找势能函数和利用势能函数进行计算的问题。
保守力的基本概念包括了与势能的关系和势能的引入。
这些概念在物理学中有着广泛的应用和重要性,对于解决各种运动和相互作用问题都起着至关重要的作用。
保守力做功和势能变化的关系
保守力做功和势能变化的关系是一个基本的物理原理,它描述了一个物体在受到保守力作用下,其势能的变化与所受的保守力所做的功之间的关系。
首先,我们来定义保守力。
保守力是一个与路径无关的力,它只与物体的位置有关。
这意味着,如果一个物体沿着一个闭合回路运动,受到的保守力所做的总功为零。
常见的保守力有重力和弹性力。
当一个物体受到保守力作用时,它的势能会发生变化。
势能是描述物体位置所具有的能量。
根据势能的定义,势能的变化可以通过将物体从一个位置移动到另一个位置时保守力所做的功来计算。
根据物体在保守力作用下的势能变化,我们可以得出以下关系:
势能变化 = -保守力所做的功
这个关系可以解释为,当保守力对物体做正功时,物体的势能减少;反之,当保守力对物体做负功时,物体的势能增加。
这个关系也可以用数学公式来表示。
假设物体在从位置A移动到位置B时,保守力所做的功为W_AB,物体在位置A的势能为U_A,位置B
的势能为U_B,则势能变化为:
ΔU = U_B - U_A = -W_AB
其中,ΔU表示势能变化。
需要注意的是,这个关系只适用于保守力。
非保守力所做的功不能简单地与势能变化相联系。
非保守力所做的功还需要考虑其他能量转化形式,比如热能、摩擦力等。
总结起来,保守力做功和势能变化之间存在着简单的关系。
势能变化等于保守力所做的功的负值。
这个关系对于理解物体在保守力作用下的运动和能量转化非常重要。
保守力的功势能(1)重力的功XYZOa b∙∙∙gm rd m 在重力作用下由a 运动到b ,取地面为坐标原点⎰⋅=bard g m W ⎰++⋅-=ba )k dz j dy i dx (k )mg (⎰-=b az z mgdza b mgz mgz =-=初态量-末态量(2)万有引力的功rdr rMm G Wbar r ∙-=⎰3rdrr Mm G b ar r 3⎰-=)()(ba r Mm G r Mm G ---==初态量-末态量两个质点之间在引力作用下相对运动时,以M 所在处为原点, M 指向m 的方向为位矢的正方向。
m 受的引力方向与位矢方向相反。
rdr r d r r d r ==∙θcos rrMm G F3-=Mr abm(3)弹力的功∙∙∙弹簧振子ikx F-=221122()b ax x b a W kxi dxikx kx=-∙=--⎰222121b a kx kx -==初态量-末态量某些力对质点所做的功只与质点的始末位置有关,而与路径无关,这种力称为保守力。
典型的保守力:重力、万有引力、弹性力、电场力与保守力相对应的是耗散力典型的耗散力:摩擦力、粘滞阻力、磁力势能AB功是能的量度,给定两点A 、B ,保守力所做的功是一定的,即对应能量差是一定的,对应的这种能定义为势能,只与质点的位置有关。
)()(b E a E W P P ab -=定义了势能差保守力做正功等于相应势能的减少保守力做负功等于相应势能的增加选择b 点为势能为零,则0)(=b E P ab P W E (a)=质点在某一点a 的势能大小等于在相应的保守力的作用下,由所在点a 移动到零势能点时保守力所做的功rd F a E ar p∙=⎰零势能点保)(mgh E =重力2kx 21E =弹性rMm GE -=引力说明:(1)只有保守力的系统,才可引入相应的势能(2)计算势能必须规定零势能参考点(3)势能仅有相对意义,它与零势能点的选取有关,但两点间势能差与零势能点选取无关(4)势能是属于具有保守力相互作用的质点系统的,不为单个物体所具有保守力与势能函数的关系一般说来,势能是位置的函数,若用E P (x,y,z)表示,那么zE F y E F x E F pz p y p x ∂∂-=∂∂-=∂∂-=,,⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=++=k z E j y E i x E k F j F i F F p p p z y x p E k z j yi x )( ∂∂+∂∂+∂∂-=pp E grdE -∇=-=质点所受保守力等于质点势能梯度的负值。
非保守力:凡作功与路径有关的力称为非保守力。
常见的摩擦力,物体间相互作非弹性碰撞时的冲击力都属于非保守力。
非保守力具有沿任意闭合路径作功不等于零的特点。
非保守力包括耗散力和非耗散力两类。
在力学范围内接触的非保守力大多数是耗散力,所以长期以来耗散力就成了非保守力的同义词.严格说来两者是有区别的,一个系统的总机械能减少,并转变为系统的热能或内能。
通常人们把这个过程叫耗散过程,而把导致耗散的力成为耗散力。
摩擦力是耗散力,但非保守力(如爆炸力)不一定都是耗散力。
⑴定义:做功多少只由始末位置所决定,而跟路径无关的力叫做保守力。
做功多少和物体运动路径有关的力叫耗散力。
⑵说明①保守力对物体做功的多少取决于物体始末位置,如果在该力作用下,物体的运动沿闭合路线绕行一周回到了起始位置,则所做功为零。
重力、弹力等属于保守力。
耗散力做功就不能由物体的始末位置决定,而和物体的运动路径有关,在其他条件相同的情况下,物体运动路径越长,所做的功也越多。
摩擦力、粘滞力等属于耗散力②保守力和耗散力所做功的情况不同,是和这两种力的本身的特点有关。
物体系确定后保守力和物体的运动状况无关,其大小由相互作用物体的相对位置所确定,它的方向总在两个相互作用物体的连线上。
例如,物体确定后,重力的大小决定于它离开地面的高度,方向竖直向下,而和物体以什么样的速度运动无关,和物体运动速度的大小和方向如何变化无关。
耗散力的大小和方向都随着物体运动速度的大小、方向的改变而发生变化.例如,空气对运动物体的阻力,其方向随着物体运动的方向改变而变化,它的大小随物体运动速度增大而增加.③保守力和物体系的势能有着极为密切的联系。
保守力做正功,则物体系的势能减少;反之,则物体系的势能增加.而且相对两个位置之间,功量一定,能量差一定。
所以物体间存在保守力是物体系具有势能的条件。
系统的各物体在只受保守力作用的情况下其机械能守恒。
耗散力不象保守力,对于两个位置之间,力对物体做功没有确定的值,从而相应的两个位置之间没有一定的能量差。
内容摘要详细介绍保守力的特定性质证明以及常见的保守力种类。
定义势能函数,论证了几种常见势能的计算方法。
保守力和势能是经典物理学中极其重要的内容,具有十分重要的研究意义。
为此,学者们在此领域研究十分深入,主要研究保守力和势能之间是怎样的关系,那么什么是保守力呢?保守力的本质是什么?势能又是怎么引入的,势能的定义是什么,以及引入势能后,保守力与势能的关系如何。
关键词:保守力势能势能零点平衡AbstractDetailed introduction of specific properties conservative force proof and common conservative force types. The nature of the potential energy of physical meaning of a deep elaborated, demonstrates the potential of common calculation methodsKey words:Conservative force Potential energy Potential energy zero Balance内容摘要引言 (1)1.保守力 (2)1.1保守力的定义 (2)1.2保守力的性质 (2)1.3保守力的证明 (2)2.势能 (3)2.1势能的定义 (3)2.2势能的性质 (4)2.3势能零点 (5)2.4物体在势能场中的平衡 (7)3.几种常见势能的计算 (7)3.1引力势能 (7)3.2重力势能 (8)3.3弹性势能 (9)3.4电势能 (9)3.5分子势能 (10)4.结束语 (12)5.参考文献 (13)6.致谢 (14)引言保守力和势能是经典物理学中极其重要的内容,具有十分重要的研究意义。
为此,学者们在此领域研究十分深入,主要研究保守力和势能之间是怎样的关系,那么什么是保守力呢?保守力的本质是什么?势能又是怎么引入的,势能的定义是什么,以及引入势能后,保守力与势能的关系如何。
一、势能定理的准确表述1、推导如图所示,两个物体组成一个孤立系统,它们彼此存在相互作用的保守力,则由动能定理,有1:2221111122W mv mv '=-2:2212221122W mv mv '=-两式相加,有2222211212121111()()2222W W mv mv mv mv ''+=+-+由能量守恒,可知系统势能增量为2222p k 12121111()()2222E E mv mv ''∆=-∆=+-+则有2112p W W E +=-∆2、表述由上述推导可以看出,势能定理的准确表述是:物体间的相互作用保守力的总功,等于这些物体组成的系统的势能的变化的相反数,即pW E =-∆总而不是像高中课本和大部分高中资料表述的那样:重力对物体做的功,等于物体的重力势能的变化的相反数;电场力对电荷做的功,等于电荷电势能变化的相反数。
原则上讲,这些表述犯了两重错误,其一是势能属于相互作用的物体系统,而不是其中的某个物体,其二是等式的左边是相互作用力的总功,而不是其中一个力的功。
二、高中物理中势能定理的特例及其适用条件1、重力势能如右图所示,设想一个小球m 和地球M 组成一个孤立系统,两者原来均静止,现让两者在相互的万有引力作用下运动起来,则由动量守恒,有120mv Mv =-由此可知,两物体的位移满足120mx Mx =-则相互作用的万有引力(设物体在地球表面附近,且相对地球运动距离不大,万有引力可视为恒力)对两物体做的功分别为m :11W mgx =M :22W mgx =则系统重力势能的变化量为p 1212()()E W W mg x x mg h∆=-+=-+=-∆其中12h x x ∆=+,即两者的相对位移,或者说以地球为参考系时物体的竖直位移。
从上述分析来看,重力对m 的功,并不等于系统重力势能的变化;但是,我们通常研究的对象的质量m 远小于地球的质量M ,由120mx Mx =-可知,地球可视为几乎不动,121h x x x ∆=+≈,则有p 11E mg h mgx W ∆=-∆≈-=-这就是高中物理教材和大部分资料里面的势能定理——它成立的条件是:m M <<。
6.(本题4分)(5167)
真空中有一半径为R的半圆细环,均匀带电Q,如图所示.设Array无穷远处为电势零点,则圆心O
点处的电势U=_____________,
若将一带电量为q的点电荷从无穷远处移到圆心O点,则电场
力做功A=_________
7.(本题3分)(1241)
一质量为m、电荷为q的小球,在电场力作用下,从电势为U的a点,移动到电势为零的b点.若已知小球在b点的速率为v b,则小球在a点的速率v a
= ______________________.
9. (本题3分)(1050)图示BCD是以O 点为圆心,以R为半径的半圆弧,在A点有一电荷为+q的点电荷,O点有一电荷为-
BA .现将一单位正电q的点电荷.线段R
荷从B点沿半圆弧轨道BCD移到D点,则
电
场力所作的功为
__________
8(1505)
如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功
(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.
(C) A =∞. (D) A =0.
4.(本题10分)(1866)
C
-
两个同心的导体球壳,半径分别为R 1
=0.145 m 和R 2=0.207 m ,内球壳上带有负
电荷q =-6.0×10-8
C .一电子以初速度为零自内球壳逸出.设两球壳之间的区域是真空,试计算电子撞到外球壳上时的速率.(电
子电荷e=-1.6×10-19
C ,电子质量m e =
9.1×10-31 kg ,ε0=8.85×10-12 C 2 / N ·m 2
)
解:由高斯定理求得两球壳间的场强为
()212
0R
4R r r
q E <<π=
ε
2分
方向沿半径指向内球壳.电子在电场中受电场力的大小为
42
0r eq
eE F επ==
2分
方向沿半径指向外球壳.电子自内球壳到外球壳电场力作功为
⎰
⎰π=
=2
1
2
1
20
d 4d R R R R r
r
eq r F A ε()2101221
4114R R R R eq R R eq εεπ-=
⎪
⎪⎭⎫ ⎝⎛-π=
2分
由动能定理
()210122
421R R R R eq m e επ-=v
2分
得到 ()e m R R R R eq 210122επ-=v =
1.98×107 m/s。