三角不等式与三角最值问题
- 格式:pdf
- 大小:93.15 KB
- 文档页数:2
基本不等式解决解三角形面积最值问题1.引言解决三角形面积最值问题是数学中的经典问题之一,而基本不等式是解决这类问题的重要工具。
本文将介绍基本不等式的概念和基本性质,并通过实例演示如何利用基本不等式解决解三角形面积最值问题。
2.基本不等式定义三角形的基本不等式基本不等式是指数学中一类带有不等号的基本关系式,其中最常见的就是,即三边关系式的不等式形式。
3.三角形的基本不等式对于任意三角形A BC,其三边长度分别为a、b、c,我们有以下基本不等式成立:三角不等式-:$a+b>c$,$b+c>a$,$c+a>b$角边不等式-:对于锐角三角形,有$a>b>c$,$si nA>s in B>s in C$,$c os A<co sB<c os C$,$tg A>tg B>tg C$;对于钝角三角形,有$a<b<c$,$s in A<si nB<s in C$,$co sA>c os B>co sC$,$tg A<tg B<tg C$4.利用三角形的基本不等式求解面积最值问题下面通过具体实例,演示如何利用三角形的基本不等式求解解三角形面积最值问题。
问题:求解一个等边三角形的最大面积。
解答:对于等边三角形A BC,三边长度均相等,记为$a$。
根据基本不等式,我们有$a+a>a$,即$2a>a$,所以$a>0$。
进一步,我们利用三角形的面积公式$S=\fr ac{1}{2}\cd o ta\c do th$,其中$h$为等边三角形的高,可以根据勾股定理求解,得$h=\sq rt{a^2-(\fr ac{a}{2})^2}=\fr ac{a\s qr t{3}}{2}$。
将$h$代入面积公式得$S=\fr ac{1}{2}\cd o ta\c do t\fr ac{a\s qr t{3}}{2}=\fra c{a^2\s qr t{3}}{4}$。
高中数学-三角代换证明不等式和求最值2(一)三角代换的应用-证明不等式1, c 2d 2 1,求证: |ac bd | 1证明:设 a=sin ,b=cos ,c=s in ,d=cos 则有:|sin sin cos cos | |cos( )| 1, 问题得证。
例2已知a,b R,且 a 2 2 2b 1,求证:|a +2ab-b 2| 、:2解:可设 a=ksin ,b=kcos ,其中|k| 1于是有2 2 |a +2ab-b |=k 2|s in2 —cos2 |=2k 2|sin(2 )| 、2k 2 .2 2 2a b 2例3 •已知0<x<1,求证: (a b)x 1 x分析:0<x<1 , 0<1 — x<1 ,且x+(1-x)=1,联想到三角代换。
证明:因为 0<x<1 , 0<1 —x<1 设 x=sin 2 ,且 所以2 a ・ 2 sin 2 a 2 ab 2cos 2 b 2b 2 a 2 cot2ab a 2 b 21-x 例4已知 1 分析:因为 (1 cot 2 )b 2 (1 tan(a b 2 tanb)2(a b)2米用三角代换之。
2, n N 求证(1 x)n (1+ x)n 2n1考虑到右边有1-x 与1+x,故联想到利用2倍角余弦公式化简, 从而证明:因为 1 x 1,设x=cos2 ,(0所以 (1 x) nn n 2n n 2n n 2 2 n (1+x) 2 sin 2 cos 2 (sin cos ) 2 故原不等式 (1 x)n (1+x)n 2n 成立。
则 1-x=1-cos2 =1 (1 2si n 2 ) 2si n 22 1+x 1 cos 2 2cos(二)三角代换的应用-求最值 例5设x, y R ,不等式 x . y a 厂丫恒成立,求a 的最小值。
析:原不等式等价于 a 平 厲恒成立,则a 必不小于右边代数式的最大值J x y即只需求岀—x H 的最大值即可。
专题7-3解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.2022·全国甲卷(理&文)T161.已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD = .2022·新高考1卷2.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.2020·浙江卷3.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a −=. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.2019年全国Ⅲ卷·文·理T184.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.2018·北京卷 5.若ABC 的面积为2223()4a cb +−,且∠C 为钝角,则∠B = ;c a 的取值范围是 .2018·江苏卷6.在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .题型一 由不等式求最值角平分线相关1.(多选)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,π3ABC ∠=,内角B 的平分线交AC 于点D 且3BD =,则下列结论正确的是( ) A .111a c+= B .b 的最小值是2C .3a c +的最小值是43D .ABC 的面积最小值是32.(2024届·湖南衡阳市八中校考)在①,②,③中选一个,补充在下面的横线中,并解答.在中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________. (1)求A ;(2)若内角A 的角平分线交BC 于点,且,求的面积的最小值.(注:如果选择多个条件分别解答,那么按第一个解答计分)中线相关3.(2024届·湖北校联考)已知分别是的三个内角的对边,且. (1)求角;(2)若在边上且,求面积的最大值.()()b c a b c a bc +−++=sin 3(cos )a C a C b =−(2)cos cos 0b c A a C ++=ABC D 3AD =ABC ,,a b c ABC ,,A B C cos 3sin 0a C a C b c +−−=A D BC ,2BD DC AD ==ABC 重点题型·归类精讲浙江省百校联盟2022-2023学年高三上学期11月模拟4.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()tan tan 2tan b A B c B +=,BC 边的中线长为1. (1)求角A ;(2)求边a 的最小值.福建省厦门双十中学高三上学期期中5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2sin 3cos sin b A a B a B =+. (1)求角B 的大小;(2)设点D 是AC 的中点,若3BD =,求a c +的取值范围.定角定高6.如图,在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,AH=4 ,∠BAC=60°,求△ABC 面积的最小值.对式子变形后利用基本不等式求最值7.在中,角,,的对边分别为,,,已知.(1)若,,求的面积;(2)求的最小值,并求出此时的大小.湖南省益阳市2022届高三上学期9月调研8.已知ABC 的角,,A B C 对边分别为,,a b c ,3cos sin 0a B b A −=. (1)求B ∠;(2)若2a c +=,求b 的取值范围.题型二 构造函数求范围9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且,,求的取值范围.2024届·雅礼中学月考(二)10.记锐角的内角的对边分别为,已知.(1)求证:;(2)若,求的最大值.ABC A B C a b c ()2222sin 0ac B C a c b +++−=π6A =2a =ABC 2224sin 3sin 2sin C A B++B π32c =2a b −ABC ,,A B C ,,a b c sin()sin()cos cos A B A C B C−−=B C =sin 1a C =2211a b +2023届河北省唐山市三模11.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知A 为钝角,sin cos a B b B =. (1)若π6C =,求A ;(2)求cos cos cos A B C ++的取值范围.12.(2024届·湖南长郡中学校考)在锐角中,内角的对边分别为,已知.(1)求;(2)若的取值范围.ABC ,,A B C ,,a b c ()2sin cos cos 3A c B b C a +=A 3a =223b c bc ++2023届广东江门市一模13.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列. (1)求2a bc的值;(2)若b c >,求222b c a +的取值范围.2024届常德市一中校考14.在中,a ,b ,c 分别是角A ,B ,C 的对边,若,请完成以下问题: (1)求角B 的大小;(2)若为锐角三角形,,求的取值范围.2024届长沙一中月考(一)15.在锐角中,角的对边分别为,且满足. (1)求证:;(2)设的周长为,求的取值范围.ABC 1cos 2b Cc a +=ABC 1c =22a b +ABC ,,A B C ,,a b c 22b a ac −=2B A =ABC l la2024届长沙一中月考(二)16.的内角A ,B ,C 所对边分别为a ,b ,c ,点O 为的内心,记,,的面积分别为,,,已知,.(1)在①;②;③中选一个作为条件,判断是否存在,若存在,求出的周长,若不存在,说明理由.(注:如果选择多个条件分别解答,按第一个解答计分.)(2)若为锐角三角形,求面积的取值范围.17.在中,角,,所对的边分别为,,,.(1)求角的大小;(2)若的取值范围.ABC ABC OBC △OAC OAB 1S 2S 3S 22213132S S S S S +−=2AB =cos cos 1a C c A +=4sin sin cos21B A A +=12cos 12cos 0sin sin A BA B−−+=ABC ABC ABC ABC ABC A B C a b c sin sin tan cos cos A BC A B+=+C ABC 3c18.(2024届·扬州中学校考)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin 23A a B +=,则ABC 周长的取值范围为 .2024届河南省实验中学校考19.在锐角中,内角所对的边分别为,,,满足,且.(1)求证:;(2)已知是的平分线,若,求线段长度的取值范围.湖北省腾云联盟2023-2024学年高三上学期10月联考20.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且ABC 的面积()1cos S bc A =−,则2abc的取值范围为A .4,5⎡⎫+∞⎪⎢⎣⎭B .416,515⎡⎫⎪⎢⎣⎭C .432,535⎡⎫⎪⎢⎣⎭D .3216,3515⎡⎫⎪⎢⎣⎭ABC ,,A B C a b c 222sin sin sin 1sin sin A A CC B−−=A C 2BC =BD ABC ∠4a =BD专题7-3解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
高中三角函数三角函数的不等式与最值问题在高中数学学习中,三角函数是一个重要的章节。
除了学习三角函数的定义、性质和图像等基本知识外,我们还需要掌握三角函数的不等式和最值问题的解决方法。
本文将为大家详细介绍高中三角函数的不等式与最值问题,并提供相应的解决思路和方法。
一、三角函数的不等式1. 正弦函数的不等式正弦函数的定义域为实数集,而正弦函数的值的范围在[-1, 1]之间。
因此,当我们解决正弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的正弦函数转化为关于θ的等价不等式;(3)根据正弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式sinθ > 0,我们可以按照上述步骤进行求解:(1)由于正弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式sinθ > 0转化为等价不等式:0 < sinθ < 1;(3)根据正弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (2kπ, 2kπ + π/2),其中k ∈ Z。
2. 余弦函数的不等式余弦函数的定义域为实数集,而余弦函数的值的范围在[-1, 1]之间。
因此,当我们解决余弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的余弦函数转化为关于θ的等价不等式;(3)根据余弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式cosθ ≥ 0,我们可以按照上述步骤进行求解:(1)由于余弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式cosθ ≥ 0转化为等价不等式:cosθ > -1 或cosθ < 1;(3)根据余弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (-2kπ, -2kπ + π/2) U (2kπ, 2kπ + π),其中k ∈ Z。
2024年3月上半月㊀学习指导㊀㊀㊀㊀应用基本不等式,破解三角形最值◉河南省固始县高级中学㊀沈玉洁㊀㊀利用基本不等式破解三角形中的角㊁边㊁周长㊁面积以及相应代数式等的最值及其综合应用问题,一直是高考命题中的一个重点与难点,交汇点多,综合性强,难度较大,灵活多样,备受各方关注.本文中结合实例,合理通过基本不等式的巧妙放缩,得以确定相应的最值.1角的最值问题利用基本不等式求解三角形中角的最值问题,是高考的一个考点.解决这类问题的关键是,利用正㊁余弦定理及基本不等式求出三角形中相应内角的某一三角函数值的取值范围或进一步利用三角函数的单调性求出角的最值等.例1㊀在әA B C 中,已知0<A <π2,0<B <π2,2s i n A =c o s (A +B )s i n B ,则t a n A 的最大值为.解析:由2s i n A =c o s (A +B )s i n B =-c o s C s i n B 及正弦定理和余弦定理,可得2a =-a 2+b 2-c22a bˑb ,化简可得5a 2+b 2=c 2.而t a n 2A =s i n 2A c o s 2A =1c o s 2A-1,又A 为锐角,可得c o s A >0,t a n A >0,因此只要求出c o s A 的最小值,就可求得t a n A 的最大值.结合基本不等式,利用余弦定理有c o s A =b 2+c 2-a 22b c =3b 2+2c 25b c ȡ23b 2ˑ2c 25b c =265,当且仅当3b 2=2c2,即c =62b 时等号成立,所以t a n 2A =1c o s 2A -1ɤ1(265)2-1=124,解得t a n A ɤ612,则t a n A 的最大值为612.点评:解决本题的关键是利用正弦定理㊁余弦定理化角为边的关系式,并结合基本不等式与余弦定理求出角A 的余弦值的取值范围,然后利用三角关系式的变形与转化,以及不等式的性质来确定角A 的正切值的平方的最值,进而获解.2边的最值问题求解三角形中边(或对应的线段长度等)的最值问题是高考的一个基本考点,解决这类问题的关键是利用余弦定理表示出所要求的边,然后利用基本不等式或三角形的三边关系等条件求出边的最值.例2㊀在әA B C 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a c o s C -a s i n C =3b .(1)求角A 的大小;(2)若D 为B C 的中点,且A D =2,求a 的最大值.解析:(1)由3a c o s C -a s i n C =3b ,结合正弦定理,可得3s i n A c o s C -s i n A s i n C =3s i n B =3s i n (A +C ),整理可得-s i n A s i n C =3c o s A s i n C ,即t a n A =-3.又A ɪ(0,π),所以A =2π3.(2)由于D 为B C 的中点,可得2A D ң=A B ң+A C ң,式子两边同时平方,有4A D ң2=AB ң2+2A Bң A C ң+A C ң2,又A D =2,所以16=c 2+b 2+2b c c o s A =c 2+b 2-b c ,即b 2+c 2=16+b c .而结合余弦定理,可得a 2=b 2+c 2-2b c c o s A =b 2+c 2+b c =16+2b c .由基本不等式,可得2b c ɤb 2+c 2=16+b c ,解得b c ɤ16,当且仅当b =c 时等号成立,所以2b c +16ɤ48,即a 2=16+2b c ɤ48,解得a ɤ43,当且仅当b =c ,即әA B C为等腰三角形时,等号成立.所以a 的最大值为43.点评:利用平面向量的线性关系的两边平方处理以及余弦定理的应用,用b 2+c 2及b c 的线性关系式表示出a 2是解决本题的关键,同时注意利用基本不等式来合理放缩b 2+c 2与b c 之间的不等关系,为确定边的最值奠定基础.3三角形周长的最值问题三角形周长的最值问题是高考的一个热点与常见题型,这类问题一般可以求出一条边(或已知一边),然后利用余弦定理表示出另两条边满足的关系式,最后利用基本不等式求出周长的最值.例3㊀在әA B C 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知c o s B a b +c o s C a c +2c o s Ab c=0.54学习指导2024年3月上半月㊀㊀㊀(1)求A ;(2)若a =23,求әA B C 周长的取值范围.解析:(1)由c o s B a b +c o s C a c +2c o s Ab c=0及正弦定理,可得c o s B s i n A s i n B +c o s C s i n A s i n C +2c o s A s i n B s i n C=0.整理得s i n C c o s B +s i n B c o s C +2s i n A c o s A =0,即s i n (B +C )=-2s i n A c o s A .在әA B C 中,s i n (B +C )=s i n A ʂ0,所以可得c o s A =-12,而A ɪ(0,π),可得A =2π3.(2)由(1)及余弦定理可得a 2=b 2+c 2-2b c c o s A =(b +c )2-2b c +b c =(b +c )2-b c ,合理变形并结合基本不等式,可得(b +c )2=a 2+b c ɤa 2+(b +c2)2,当且仅当b =c 时等号成立,所以(b +c )2ɤ43a 2=43ˑ(23)2=16,解得b +c ɤ4.又利用三角形的基本性质有b +c >a =23,即b +c ɪ(23,4].所以әA B C 周长的取值范围为(43,4+23].点评:涉及三角形周长的最值问题,经常在已知或已求得其中一边的基础上,通过另外两边之和的最值转化来综合,而这时往往需要借助基本不等式来合理放缩与应用,同时也离不开三角形的基本性质等.4三角形面积的最值问题三角形面积的最值问题一直是高考命题的一个热点,解决这类问题的关键是找出两边(这两边的夹角往往已知或可求)之积满足的不等关系式,借助基本不等式合理放缩,再利用三角形面积公式解决问题.例4㊀在әA B C 中,D ,E 分别是线段A C ,B D 的中点,øB A C =120ʎ,A E =4,则әA B C 面积的最大值为.(323)解析:略.点评:解决本题的关键是利用余弦定理,或利用平面向量中的线性运算,或利用坐标运算等表示出b ,c 满足的关系式,然后利用基本不等式求出b c 满足的不等关系,最后利用三角形面积公式解决问题.5涉及角或边的代数式的最值问题关于三角形中的边长或角的代数式的最值问题是新课标高考的一个新趋向,创新新颖,变化多端,解决这类问题的关键是消元 消边或消角,对元素进行统一化处理,然后利用基本不等式求出最值即可.例5㊀记әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c o s A 1+s i n A =s i n 2B1+c o s 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解析:(1)利用二倍角公式,可得c o s A1+s i n A=s i n 2B 1+c o s 2B =2s i n B c o s B 2c o s 2B =s i n Bc o s B ,则有s i n B =c o s A c o s B -s i n A s i n B =c o s (A +B )=-c o s C =-c o s 2π3=12,而0<B <π3,所以B =π6.(2)由(1)可得-c o s C =s i n B >0,则知c o s C <0,则有C ɪ(π2,π),于是有B =C -π2,可得s i n A =s i n (B +C )=s i n (2C -π2)=-c o s 2C .结合基本不等式,利用正弦定理可得㊀㊀㊀㊀a 2+b 2c 2=s i n 2A +s i n 2Bs i n 2C=c o s 22C +c o s 2C s i n 2C=(1-2s i n 2C )2+(1-s i n 2C )s i n 2C=4s i n 4C -5s i n 2C +2s i n 2C=4s i n 2C +2s i n 2C-5ȡ24s i n 2C ˑ2s i n 2C -5=42-5,当且仅当4s i n 2C =2s i n 2C ,即s i n C =142时,等号成立.所以a 2+b 2c 2的最小值为42-5.点评:解决本题中涉及边的代数式的最值问题的关键在于利用正弦定理化边为角,结合诱导公式与二倍角公式的转化,综合三角关系式的恒等变形,利用基本不等式来确定相应的最值问题.当然,除了巧妙利用基本不等式的放缩来确定三角形中的角㊁边㊁周长㊁面积以及相应的代数式等的最值及其综合应用,还可以利用平面几何图形的直观性质㊁三角函数的有界性㊁函数与方程的基本性质以及导数等相关知识来解决.而这当中基本不等式的放缩与应用是最简单有效的一种方法,也是最常见的,要结合问题的实质加以合理转化,巧妙构建 一正㊁二定㊁三相等 的条件,为利用基本不等式来处理三角形最值问题提供条件.Z64。
初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。
下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。
例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。
2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。
例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。
利用这些不等式,可以推导出一些关于几何元素的最值关系。
3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。
例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。
对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。
4.利用几何定理:几何定理是解决几何最值问题的有力工具。
例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。
对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。
5.利用数形结合:数形结合是解决几何最值问题的常用方法。
通过将几何问题转化为代数问题,可以更容易地找到问题的解。
例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。
以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。
三角函数的不等式与最值三角函数是数学中重要的一类函数,它们在不等式求解和最值问题中具有广泛的应用。
本文将介绍三角函数的不等式求解方法以及如何找到三角函数的最值。
1. 正弦函数的不等式与最值1.1 不等式求解方法对于不等式sin(x)>0,我们需要找到使得正弦函数大于零的x的取值范围。
由于正弦函数在单位圆上的坐标表示sin(x)=y,因此正弦函数大于零的范围可以表示为y>0。
在单位圆上,y>0对应着角度在0到π之间的位置。
因此,不等式sin(x)>0的解集为x∈(0, π)。
1.2 最值求解方法最值问题通常需要找到函数的最大值或最小值。
对于正弦函数sin(x),它的最大值为1,最小值为-1。
这是因为正弦函数在单位圆上的y坐标的范围是[-1, 1]。
因此,最大值为1,最小值为-1。
2. 余弦函数的不等式与最值2.1 不等式求解方法对于不等式cos(x)<0,我们需要找到使得余弦函数小于零的x的取值范围。
由于余弦函数在单位圆上的坐标表示cos(x)=x,因此余弦函数小于零的范围可以表示为x<0。
在单位圆上,x<0对应着角度在π/2到3π/2之间的位置。
因此,不等式cos(x)<0的解集为x∈(π/2, 3π/2)。
2.2 最值求解方法对于余弦函数cos(x),它的最大值为1,最小值为-1。
这是因为余弦函数在单位圆上的x坐标的范围是[-1, 1]。
因此,最大值为1,最小值为-1。
3. 正切函数的不等式与最值3.1 不等式求解方法对于不等式tan(x)>0,我们需要找到使得正切函数大于零的x的取值范围。
正切函数可表示为tan(x)=sin(x)/cos(x)。
根据正切函数的性质,当sin(x)和cos(x)的符号相同时,tan(x)大于零;当它们的符号不同时,tan(x)小于零。
因此,正切函数大于零的范围可以表示为sin(x)和cos(x)同号。
在单位圆上,sin(x)>0且cos(x)>0的范围对应着角度在0到π/2之间和角度在2π到5π/2之间的位置。
三角形最值问题对同学们的运算以及逻辑推理能力有较高的要求.此类问题通常侧重于考查正余弦定理、三角函数的定义、三角函数的单调性、基本不等式等.本文结合一道三角形最值问题,谈一谈解答此类问题的常用措施.例题:已知在ΔABC 中,点D 在边BC 上,BD =2CD ,AD =BD ,求tan A cos 2B 的最大值.一、利用基本不等式我们知道,若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.而运用基本不等式求最值,往往要确保:(1)两个数均为正数;(2)两数的和或积为定值;(3)当且仅当a =b 时取等号.在解答三角形最值问题时,要先灵活运用正余弦定理进行边角互化,把目标式化为只含边或角的式子;然后运用一些配凑技巧,如凑系数、添项、去常数项、平方等,配凑出两式的和或积,并使其中之一为定值,即可运用基本不等式求得最值.解法1.如图1所示,过点D 作DE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F ,由AD =BD ,DE ⊥AB 可得E 为AB 的中点.因为BD =2CD ,AD =BD ,所以DE ∥CF ,所以AE =BE =2EF ,所以F 为AE 的中点.可得BE =2AF ,即AF =12BE .所以DE CF =BD BC =23,所以CF =32DE .在RtΔACF 中,tan A =CF AF =3DE BE.在RtΔBDE 中,DE 2+BE 2=BD 2,所以BD 2≥2DE ⋅BE ,而cos B =BE BD ,所以tan A cos 2B =3DE BE ⋅(BE BD)2=3DE ⋅BE BD 2≤3DE ⋅BE 2DE ⋅BE =32,当且仅当DE =BE ,即B =45°时不等式取等号,故tan A cos 2B 的最大值为32.先添加辅助线,根据等腰三角形三线合一的性质和平行线的性质,建立各边之间的比例关系,从而求得tan A 、cos B 的表达式,得出tan A cos 2B =3DE ⋅BEBD 2.而在RtΔBDE 中,DE 2+BE 2=BD 2,由基本不等式可得BD 2≥2DE ⋅BE ,通过约分即可求得目标式的最值.二、利用三角函数的性质三角函数具有有界性和单调性,而这两种性质是求三角函数最值的重要依据.在解答三角形最值问题时,可先根据正余弦定理将边角关系化为关于角的关系式,并用角的三角函数式表示出目标式,将问题转化为三角函数最值问题;然后利用三角函数中的诱导公式、二倍角公式、辅助角公式等进行恒等变形,将目标式化为只含有一种三角函数名称的式子,进而利用三角函数的有界性和单调性求最值.解法2.设ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,CD =m (m >0),则AD =BD =2m ,因为∠ADB 与∠ADC 互为邻补角,所以cos∠ADB =-cos∠ADC .在ΔABD 中,由余弦定理得c 2=4m 2+4m 2-2×2m ×2m cos∠ADB ,化简得c 2=8m 2-8m 2cos∠ADB ,即c 2=8m 2+8m 2cos∠ADC ①;在ΔACD 中,由余弦定理得b 2=4m 2+m 2-2×2m ×m cos∠ADC ,化简得b 2=5m 2-4m 2cos∠ADC ,所以2b 2=10m 2-8m 2cos∠ADC ②.将①+②得c 2+2b 2=18m 2,又因为a =3m ,所以c 2+2b 2=2a 2.在ΔABC 中,由余弦定理得cos B =a 2+c 2-b 22ac=a 2+c 2-(a 2-12c 2)2ac =3c4a,由正弦定理可得cos B =3c 4a =3sin C 4sin A,所以4sin A cos B =3sin C =3sin(A +B )=3sin A cos B +3cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .所以tan A cos 2B =3tan B cos 2B =3sin B cos B =32sin2B ≤32,思路探寻图149当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.我们先根据余弦定理求得tan A 、cos B 的表达式,得出tan A cos 2B 的表达式,并根据tan B =sin Bcos B以及二倍角公式sin2B =2sin B cos B ,将目标式化为只含有正弦函数的式子,即可运用正弦函数的有界性求得目标式的最值.解法3.因为BD =2CD ,AD =BD ,所以AD =2CD .因为AD =BD ,所以∠BAD =∠B ,所以∠DAC =∠A -BAD =∠A -∠B .在ΔACD 中,由正弦定理得AD sin C =CDsin∠DAC,即2CD sin(A +B )=CDsin(A -B ),所以2sin(A -B )=sin(A +B ),可得2sin A cos B -2cos A sin B =sin A cos B +cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .以下同解法2,具体过程略.该解法主要运用了正弦定理,根据角之间的关系进行三角恒等变换,得到tan A =3tan B ,再根据正弦函数的有界性求得最值.我们还也可以根据正切函数的定义和勾股定理,在RtΔBDE 中,求得tan B =DE BE =CF3AF,在RtΔACF 中,求得tan A =CF AF ,从而得出tan B =13tan A ,再根据正弦函数的有界性求得最值.利用三角函数的性质求解三角形最值问题,关键是将目标式化为关于角的三角函数式,并将其化简为只含有一种三角函数名称的式子,就能根据三角函数的有界性和单调性顺利求得最值.三、构建坐标系运用坐标法求解三角形最值问题,需先根据三角形的特征,建立合适的平面直角坐标系:可以三角形的一条底边为坐标轴,以一个顶点或底边的中点为原点;也可以三角形底边为x 轴,底边的中垂线为y 轴来建立坐标系.在建立坐标系后,求得各个点的坐标,再运用两点间的距离公式、直线的斜率公式和方程、三角函数的定义来求得角、边长以及目标式,最后运用函数的性质、三角函数的性质、基本不等式求最值.解法4.如图2所示,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,设CD =m (m >0),∠ADB =θ,则点C (m ,0),B (-2m ,0),A (-2m cos θ,2m sin θ),所以tan B =k AB =2m sin θ-2m cos θ+2m =sin θ1-cos θ,tan C =-k AC =2m sin θ2m cos θ+m =2sin θ2cos θ+1.可得cos 2B =11+tan 2B=1-cos θ2,tan A =-tan(B +C )=tan B +tan Ctan B tan C -1=(sin θ1-cos θ+2sin θ2cos θ+1)÷(sin θ1-cos θ⋅2sin θ2cos θ+1-1)=3sin θ1-cos θ.所以tan A cos 2B =3sin θ1-cos θ⋅1-cos θ2=32sin θ≤32,当sin θ=1,即θ=90°时,AD ⊥BC ,不等式取等号,故tan A cos 2B 的最大值为32.为了便于求得各点的坐标,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,并设∠ADB =θ,用θ表示出cos 2B 、tan A 以及tan A cos 2B ,即可利用正弦函数的有界性求得最值.解法5.因为AD =BD ,过O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立如图3所示的平面直角坐标系xOy .设CD =m (m >0),易知AD =BD =2m ,所以点C (-m cos B ,3m sin B ),A (-2m cos B ,0),可得tan A =k AC =3m sin Bm cos B=3tan B .所以tan A cos 2B =3tan B cos 2B=3sin B cos B =32sin2B ≤32,当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.根据等腰三角形三线合一的性质,过点O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立平面直角坐标系xOy ,即可快速求得D 、C 的坐标.再用角B 的三角函数表示出tan A cos 2B ,便可根据正弦函数的有界性求得问题的答案.求解三角形最值问题的思路较多,无论运用哪种思路解题,都需灵活运用正余弦定理进行边角互化,求得目标式,然后根据目标式的结构特征,选用合适的方法求最值.(作者单位:山东省牟平第一中学)图3思路探寻图250。
微专题6例题1 答案:8.解析:由sin A =sin (π-A)=sin (B +C)=sin B cos C +cos B sin C ,sin A =2sin B sin C ,可得sin Bcos C +cos B sin C =2sin B sin C.由三角形ABC 为锐角三角形,则cos B >0,cos C >0,可得tan B +tan C =2tan B tan C.又tan A =-tan (π-A)=-tan (B +C)=-tan B +tan C1-tan B tan C ,则tan A tan B tan C =tan A +tan B +tan C =tan A +2tan B tan C ,由A ,B ,C为锐角可得tan A >0,tan B >0,tan C >0,所以tan A tan B tan C =tan A +2tan B tan C ≥22tan A tan B tan C , 即tan A tan B tan C ≥8,当且仅当tan A =2tan B tan C ,即tan B =2+2,tan C =2-2,tan A =4(或tan B ,tan C 互换)时取到等号,因此tan A tan B tan C 最小值为8.变式联想变式1 答案:6-24. 解析:设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则由正弦定理得a +2b =2c , 所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab ≥234a 2×12b 2-22ab 2ab=6-24,当且仅当34a 2=12b 2时,即a b =23时等号成立,所以cos C 的最小值为6-24. 变式2 答案:811.解析:由S =12bc sin A ,得bc =4sin A .又a 2=b 2+c 2-2bc cos A ,所以a 2+2b 2+3c 2=3b 2+4c 2-2bc cos A ≥23b 2·4c 2-2bc cos A =bc ()43-2cos A =8(23-cos A )sin A .令f(A)=8(23-cos A )sin A,A ∈(0,π),f ′(A)=8(1-23cos A )sin 2A ,令f′(A)=0,解得cos A =123,sin A =1123,由单调性可知此时f(A)取得最小值为811.当且仅当3b =2c 且cos A =123时取等号,则a 2+2b 2+3c 2的最小值为811.串讲激活串讲1 答案:3.解析:设∠CBA =α,AB =BD =a ,则在△BCD 中,由余弦定理可知CD 2=2+a 2+22sin α,在三角形ABC 中,由余弦定理可知cos α=a 2+122a ,可得sin α=-a 4+6a 2-122a ,所以CD 2=2+a 2+-a 4+6a 2-1,令t =2+a 2,则CD 2=t +-t 2+10t -17=t +-(t -5)2+8≤2·(t -5)2+[-(t -5)2+8]+5=9,当(t -5)2=4时等号成立.∴CD 的最大值为3. 串讲2答案:(1)π3;(2)2.解析:(1)由条件可知a(sin A -sin B)+b sin B =c sin C ,由正弦定理可得a 2+b 2-c 2=ab ,又由余弦定理知cos C =a 2+b 2-c 22ab =12,C ∈(0,π),得C =π3.在△ABC 中可(2)由mtan C=1tan A+1tan B ,可得m =)tan 1tan 1(B A +tan C ,即m =sin Ccos C )sin cos sin cos (A B B A +=sin C cos C×cos A sin B +cos B sin A sin A sin B =sin C cos C ×sin C sin A sin B .由正、余弦定理可得m min =c 2ab ×1cos C =2c 2ab =2(a 2+b 2-ab )ab =2)1(-+baa b ≥2,当且仅当a =b 时,等号成立,所以实数m 的最小值为2.新题在线答案:(1)S =a )sin 2cos 334(+-αα,α∈)32,3(ππ;(2)AD =5+510时,S 最小.解析:(1)在△ABD 中,由正弦定理得1sin α=BD sinπ3=AD sin ⎝⎛⎭⎫2π3-α,所以BD =32sin α,AD =3cos α2sin α+12,则S =a )21sin 2cos 3(+αα+2a )]21sin 2cos 3(1[+-αα+4a )sin 23(α=a )23sin 2cos 334(+-α,由题意得α∈)32,3(ππ. (2)令S′=3a·1-4cosαsin 2α=0.设cos α0=14.所以当cos α=14时,S 最小,此时sin α=154,AD =3cos α2sin α+12=5+510.。