北京版小学数学五年级下册5分解质因数(1)
- 格式:doc
- 大小:31.78 KB
- 文档页数:3
五年级数学下册典型例题系列之期中复习拓展篇(原卷版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是期中复习拓展篇。
本部分内容考察第一单元至第四单元的拓展性内容及题型,考点和题型相对困难,偏于思维理解,建议作为根据学生情况选择性进行讲解,一共划分为八个考点,欢迎使用。
【考点一】倍数特征的应用。
【方法点拨】个位上是0、2、4、6、8的数是2的倍数。
个位上是0或5的数是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
【典型例题1】如果五位数□436□是45的倍数,那么这个五位数是多少?【典型例题2】一个大于2的自然数,除以3余2,除以5余2,除以7也余2,那么这个自然数最小是多少?【典型例题3】三个数的和是 555,这三个数分别能被3、5、7 整除,而且商都相同,这三个数分别是多少?【考点二】分解质因数的应用。
【方法点拨】分解质因数指的就是把一个合数用几个质数乘积的形式表示出来。
例:15=3×5,24=2×2×2×3,这就是分解质因数。
【典型例题1】四个连续偶数的乘积是5760,求这四个数各是多少?【典型例题2】有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?【考点三】长方体表面积的三种增减变化方式。
【方法点拨】长方体表面积的增减变化问题主要有三种形式,即切片问题,拼接问题,高的变化引起的表面积增减变化,根据题目不同变化方式采用不同的方法解决问题。
【典型例题1】把一根长40厘米的长方体木条锯成两段,表面积增加了18平方厘米。
人教版数学五年级下册质数和合数优秀教案(推荐3篇)人教版数学五年级下册质数和合数优秀教案【第1篇】教学设计质数与合数。
(教材第37~40页)1. 经历探索数的特征的活动,认识质数和合数,学会判断一个数(50以内)是质数还是合数。
进一步发展数感。
2. 使学生在探索数的特征的过程中,进一步培养观察、比较和归纳等能力。
3. 通过自主探究、合作交流理解质数和合数的意义,经历概念的发掘过程。
4. 让学生体会数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心;感受数学思考的严谨性,增强学习数学的兴趣。
重点:使学生通过找一个数的因数的方法理解质数和合数的意义。
难点:能够迅速判断一个数(50以内)是质数还是合数。
课件。
师:同学们, “六一”儿童节快到了,老师给大家送来了礼物!(课件出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位是9的最大因数;中间一位是最小的质数。
你能打开密码锁吗?学生质疑:什么是质数?师:哦,原来同学们打不开密码锁的原因是不知道什么是质数,今天我们就一起先来认识“质数和合数”吧!【设计意图:爱因斯坦说过“兴趣是最好的老师”。
运用学生感兴趣的送礼物的情境引入本课,激发了学生的学习兴趣。
通过打开密码锁就可知道礼物,激发起学生对新知识浓厚的探究欲望】1. 教学例6。
师:请同学们写出下面各数的所有因数。
(课件出示:教材第37页例6题)学生尝试独立写出各数的因数;教师巡视了解情况。
组织学生汇报交流,课件展示结果。
师:现在请所有同学一起来观察屏幕上这些数字的所有因数,看看你发现了什么?按照每个数的因数的个数,(板书:按因数的个数划分)可以分为哪几种情况?并说说你为什么这样分?生:根据因数的个数可以分为两类,有两个因数的,还有两个以上因数的。
师:先观察只有两个因数的数的特征,谁能发现他们的因数有什么特点呢?生:它们的因数是1和它本身。
第二单元单元检测卷(包含答案)一、计算题(24分)1、直接写出得数。
(12分)0.62×3= 14×0.07= 300×1.5= 8.4×0=5.4÷9= 1.12÷7= 0.55÷0.5= 6÷0.03=2.4+0.68= 10.5-7.5= 1-0.38= 2.34+6.66= 2、计算下面各题。
(6分)(1)22.4÷3.5+5.7×3.2 (2)(2.1-0.38×2.4)÷1.23、解方程。
(6分)(1)5.2.03.0=x-xx(2)772.5÷6.2⨯=二、填空题(40分)1、按要求写数。
(8分)16的因数有();24的因数有();50以内7的倍数();50以内12的倍数()。
2、(2分)一个数是30的因数,又是2的倍数,这个数可能是()。
(有多少个就写出多少个)3、(8分)在6、0.3、1、24、0、29、17、2、51、39这九个数中,属于奇数的有(),属于偶数的有(),属于质数的有(),属于合数的有()。
4、选择合适的数填空。
(18分)(1)()是()的倍数,()是()的因数。
()和()都是6的倍数,()和()都是6的因数。
(2) 60的因数有()。
(3)在这些数中,是3的倍数的有(),既是2的倍数,又是5的倍数的有(),既是2的倍数又是3的倍数的有(),同时是2、3、5的倍数的有()。
5、按要求在□里填上合适的数字(有多种填法的,只填其中一种)(4分)(1)四位数“237”是2的倍数。
(2)三位数“9”是5的倍数。
(3)四位数“723”是3的倍数。
(4)三位数“4”既是3的倍数,也是5的倍数。
三、判断题。
(5分)(1)因为91有1和它本身两个因数,所以91是质数。
()(2)两个质数的和还是质数。
()(3)所有的质数都是奇数。
( ) (4)一个自然数,不是质数就是合数。
《质因数和分解质因数》教学设计【教学内容】苏教版小学数学五年级下册第 38页例7、例 8、“练一练”,第 39 页练习六第3~5 题。
【教学目标】1.理解质因数、分解质因数的意义,能将一个合数分解质因数。
2.在探索分解质因数的过程中,发展数感,培养观察、比较和抽象、概括的能力。
3.在探究分解质因数的方法中,体会数学学习的开放性,激发创新意识,培养学习兴趣。
【教学重点】理解质因数和分解质因数的意义,掌握分解质因数的方法。
【教学难点】用短除法分解质因数。
【教学过程】一、复习旧知同学们,上节课我们一起认识了质数和合数。
你能把下面各数填到相应的圈内。
8、13、30、23、1、39、41、54、75质数合数问:(指着第一个集合问)为什么说这些数是质数?什么是合数?(这几个数除了1和本身这两个因数外,还有其他的因数,因此叫它们合数) 1呢?二、认识质因数1.写出算式。
师:刚才,我们一起回顾了质数和合数的知识,接下来,我们来看这两个数。
要求:你能把5和28分别写成两个数相乘的形式吗?自己先写一写。
交流:你是怎样写的?(课件呈现:5=1×5 28=1×28 28=2×14 28=4×7) 2.认识质因数。
引导:根据这些算式,你能说出哪些数是5的因数?哪些数是28的因数? 同桌互相说一说。
(根据学生回答,课件呈现:1和5是5的因数……)问:5和28的这几个因数中,分别有哪些是质数?能快速找出来吗?(根据学生回答,课件上质数变成红色)明确概念:一个数的因数是质数,这个因数就是它的质因数。
(板书)3.强化认识。
追问:上面算式里,哪个数是哪个数的质因数?同桌相互说一说,谁来说一说,谁再来说一说。
(根据学生回答,课件呈现:5是5的质因数,2、7是28的质因数)继续追问:1为什么不是5的质因数? 14为什么不是28的质因数?4. 练习六第4题。
(1)35=5×7,5和7都是35的因数吗?都是35的质因数吗?为什么?(2)27=3×9,3和9都是27的因数吗?都是27的质因数吗?为什么?讨论:怎样的数才是一个数的质因数呢?需要满足哪些条件呢?先和同桌说一说。
人教版数学五年级下册第5课质数和合数说课稿(优选3篇)
〖人教版数学五年级下册第5课质数和合数说课稿第【1】篇〗 《质数和合数》说课稿 一、说教材 1.课时教学内容的地位、作用和意义: 质数和合数是在学生已经掌握了约数和倍数的意义,了解了能被2,5,3整除的数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公约数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。 2.教学目标: (1)知识和技能: ①掌握质数和合数的概念,会正确判断一个数是质数还是合数。 ②知道自然数还可以分成质数、合数与1三类。 (2)过程和方法:通过100以内的质数表的制作,使学生学会合理选取学习材料的方法。 (3)情感、态度和价值观:通过学习,培养学生自主探索、独立思考、合作交流的能力。 二、说学情 《数的整除》这一单元,概念多,理解难,易混淆。学生通过对约数和倍数以及能被2,5,3整除的数的学习,有了一定的认知基础,本节课的教学内容是在学生已经掌握约数概念的基础上进行教学的。 三、说教法 新课程标准要求转变学习方式,学生是学习的主人,教师要为学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验。根据本节知识特点和小学生的年龄特点及认知规律,遵照课标精神,我采取了动手操作,引导探索,发现规律,培养分类归纳的数学意识和品质的教学方法。 四、说学法 教师的任务不仅要使学生学会,更重要的是要使学生会学。因此,我在设计这个教学内容时分了这样几个层次。 第一层次:首先让学生从1到20中随意挑选5个数写出这5个数的约数,然后通过汇总整理归纳,使学生发现自然数还可以按约数的个数分成质数、合数与1。 第二层次:接着通过判断一些数是质数还是合数,让学生进一步理解质数与合数的概念以及掌握质数与合数的判断方法。 第三层次:要求学生通过小组合作的方法来制作一张质数表。 在这一教学环节中我就设计了4张数表,让学生通过对数表的选择,来感悟学习材料的选择对方法的应用是有影响的。从而使学生领悟到今后在研究问题时,要注意选择最方便自己解决问题的方法。 在找2到50中的质数这一环节,我给学生以充足的时间和空间,让学生独立思考,然后组内互相交换意见,这样学习方式就变得多样化了,同时也使学生感受到了合作交流的重要性,从而自发地掌握了学习方法。整个过程,从思维的'形式上说,是有联系的,有序的,处于做数学的水平。促使学生学习和反思动脑的方法,真正学会学习。 第四层次:在制作完质数表后,我安排学生用质数表来判断质数和合数,使学生体会到质数表的优越性。 第五层次:最后安排了一个小游戏,用今天学到的知识和以前学到的知识来介绍自己的学号。游戏练习、符合小学生的兴趣,学生都乐于积极参与,在收到巩固的最佳效果的同时,又能培养学生思维的敏捷性。 说课二 您现在正在阅读的《质数和合数》说课稿(2篇)文章内容由收集!本站将为您提供更多的精品教学资源!《质数和合数》说课稿(2篇)一、说教材: 质数和合数是在约数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。质数和合数是求最大公约数、最小公倍数以及约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能记较快地看出常见数是质数还是合数。这一节内容中抽象概念较多,而且有些概念容易混淆,如:质数与奇数、合数与偶数等。 教学目标: 1.学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。 2.能初步弄清质数与奇数、合数与偶数等概念的区别及联系,提高学生对知识的把握水平。 3.让学生在活动中体验到学习数学的乐趣。 4.培养学生的观察、比较、归纳、概括能力。 教学重、难点: 1.掌握质数、合数的概念,准确判断一个数是质数还是合数。 2.奇数、偶数、质数、合数的区别与联系。 二、说教法、学法: 首先,在学习准备中让学生根据以往的知识经验,对小组号码数字进行分类(按奇数、偶数分,按位数分等等)。对学生不同的分法老师都给予肯定,同时引导学生对非零自然数的另一种分法,即按一个数的约数的个数来分,从而引入新课。 其次,教师引导学生写出自己小组号码数的约数,并绘制成表,让学生观察表按约数的个数来分该怎样来分。通过观察、比较,发现这三类数的特点,归纳、概括出质数、合数的概念。然后教学例2:质数和合数的判断。教师指出还可以通过查质数表来判断一个数是质数还是合数,并引导学生制作质数表。从而使学生初步发现质数和奇数、合数和偶数等概念的区别及联系。 再次是一些练习题巩固所学知识,拓展学生思维。最后课堂小结布置作业。 三、说教学过程: (一)学习准备:让学生根据以往的学习经验,对自己的小组号码数进行分类(按奇数、偶数分,按位数分等等),同时引导学生对非零自然数的另一种分法,即按一个数的约数的个数来分,从而引入新课。 (二)探究新知: 1. 建立质数、合数概念: 找约数进行分类、观察归纳出质数、合数概念。 2.教学例2:质数和合数的判断。 你认为怎样去判断一个数是质数还是合数? 告诉学生还可以通过查质数表来判断,并指导学生制作质数表,引导学生发现,初步弄清质数与奇数、合数与偶数等概念的区别及联系。 (三)巩固拓展应用: 1.填空 2.判断 3.思维训练 (四)全课小节:这节课我们学习了什么?你有哪些收获?还有什么问题? (五)布置作业;练习十三的第2、3题。
《合数、质数》教学设计【教学内容】西师版五年级下册第一单元第9-10页的内容。
【教学目标】1.理解质数(或素数)和合数的意义,了解1的特殊性,并能判断一个数是质数还是合数。
2.理解质因数和分解质因数的意义,并会分解质因数。
3.丰富对数的认识,培养数感,发展数学的推理能力。
【教学重点】理解质数、合数的意义,掌握分解质因数的方法。
【教学难点】理解掌握质数、合数的概念的基础上,能区分奇数、质数、偶数、合数。
【教学过程】一、复习导入师:同学们,前面我们已经学习了因数和倍数,你会找一个数的因数吗?生:我知道找一个数因数的方法。
一是用列乘法算式找,如:3×6=18,3和6就是18的因数;二是列除法算式找,如:18÷3=6, 6和3是12的因数。
师:你们知道了找一个数因数的方法,那么每个数的因数的个数又有什么规律?这节课我们继续来研究因数的问题。
(出示课题:质数和合数。
)[ 设计意图:通过复习因数的概念,使学生进一步充分利用所学知识,在此基础上引起学生继续探求的兴趣,也很自然地引出下面的新授知识。
]二、探究新知(一)教学例11.出示:请孩子们运用自己喜欢的找一个数的因数的方法,写出下面每个数的所有的因数。
教师:你发现了什么?学生1:它们都有因数1。
学生2:每个数的最大因数都是它本身。
2. 观察分类。
师:如果我们根据因数的个数分一下类,这些数可以分成几类呢?(1)有一个因数的数是:1(2) 有两个因数的数是:2、3、5、7、11……(3) 有两个以上因数的数是:4、9、6、8、10、12……师:同学们,像2,11,29,…只有1和它本身两个因数的数,叫做质数(或素数)。
像4,9,12,15,…除了1和它本身以外还有别的因数的数,叫做合数。
(方法提示:判断一个数是合数还是质数,看它含有因数的个数,质数只有两个因数,合数至少有三个因数。
)[设计意图:教学时,先让学生找出1~29各数的所有因数,并引导学生观察分类。
第6课时质因数和分解质因数教学内容:苏教版义务教育教科书《数学》五年级下册第38页例7、例8和“练一练”“你知道吗’’,第39~40页练习六第3~8题和“你知道吗”。
教学目标:1.使学生认识质因数,知道合数能写成质因数相乘的形式,能把合数分解质因数;了解可以用短除法分解质因数。
2.使学生经历探索分解质因数的过程,理解分解质因数的方法,掌握分解质因数的技能,发展分析、推理等思维能力,进一步提升数感。
3.使学生主动参加探究活动,在探索分解质因数的过程中获得成功,相信自己能学会数学,产生学好数学的信心。
教学重点:学会分解质因数。
教学难点:认识分解质因数的过程。
教学准备:教学PPT教学过程:数学小讲师下面各数,哪些是质数,哪些是合数?分别填入合适圈里。
一、认识质因数1.出示例7学生小组合作,汇报展示。
(1)哪些是5的因数?你是怎么想的?(2)哪些是28的因数?你是怎么想的?(3)什么是质数?在这些因数中,哪几个数是质数?(4)通过预习,你获得了什么新知识?2.学生上台展示交流预习和合作探讨结果。
3.教师小结。
明确:在积是5的乘法算式中,1和5是5的因数,其中5是质数;在积是28的算式中,1和28、2和14,4和7都是28的因数,其中2和7是质数。
像这样一个数的因数是质数,这个因数就是它的质因数。
4.强化认识。
追问:上面算式里,哪个数是哪个数的质因数?1为什么不是5的质因数?1、28、14和4为什么不是28的质因数?5.做练习六第4题。
让学生阅读习题,独立思考。
交流:你能回答这里两道题的问题吗?说说你的答案。
追问:怎样的数才可以称作一个数的质因数?二、分解质因数1.引入课题。
谈话:我们认识了质因数,就可以学习新的知识,学会新的本领,这就是分解质因数。
2.自主探究分解质因数。
出示例8。
学生小组合作,汇报展示。
(1)30可以写成2乘几?(2)还能继续分解吗?为什么?(3)把30用几个质数相乘的形式表示出来。
3.学生上台展示汇报。
《分解质因数》习题1第一课时1、判断。
(1)任何一个自然数,不是质数就是合数。
()(2)偶数都是合数,奇数都是质数。
()(3)7 的倍数都是合数。
()(4)20 以内最大的质数乘以10 以内最大的奇数,积是171。
()(5)只有两个因数的自然数,一定是质数。
()(6)两个质数的积,一定是质数。
()(7)2 是偶数也是合数。
()(8)1 是最小的自然数,也是最小的质数。
()(9)除 2 以外,所有的偶数都是合数。
()(10)最小的自然数,最小的质数,最小的合数的和是7。
()2.在()内填入适当的质数。
10=()+() 20=()+()+()10=()×() 8=()×()×()3.填一填。
⑴两个质数的和是18,积是65,这两个质数分别是()和()。
⑵一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数可能是(),还可能是()、()。
⑶用10 以内的三个质数组成一个三位数,使它能同时被3、5 整除,这个数最小是(),最大是()。
⑷最小的质数是(),最小的合数是()。
⑸两个都是质数的连续自然数是()和()。
3. 分解质因数。
24 65 38 56 9476 135 105 87 93第二课时一、填空。
1.一个数除了()和它的(),不再有别的因数,这个数叫做()数。
2.一个数除了()和它的(),还有别的因数,这个数叫做()数。
3.()不是质数,也不是合数。
4.末尾是()的数是 2 的倍数:末尾是()的数是 5 的倍数,()的数是 3 的倍数。
5.()是奇数,()是偶数。
6.12的因数共有()个,()是质数,()是合数,()既不是质数也不是合数。
7.20以内的质数有()个。
8.用最小的质数,合数和0,写出同时被2,3,5整除的最大三位数是()。
最小三位数是()。
二、判断。
1.所有的奇数都是质数。
()2.除 2 以外,所有的质数都是奇数。
( )3.所有的偶数都是合数。
(北京版)五年级数学下册教案 分解质因数 1
课题 分解质因数 课型
新授
授课时
间
月 日(星期 )
第 6 课时(共 16 课时)
教
学
目
标
1、使学生理解质因数和分解质因数的概念。
2、初步学会分解质因数的方法。
3、培养学生分析和推理的能力。
教学重点
①质因数和分解质因数的概念。②分解质因数的方法。
教学难点
分清因数和质因数,质因数和分解质因数的联系和区别。
主要教法 启发 谈话 教具
课件
学法指导
观察 总结 应用
板
书
设
计
分解质因数
把6、28、60分解质因数可以写成:
6=2×3
28=2×2×7
60=2×2×3×5
教学后记
一、创设情境
1.回答:什么叫做质数?什么叫做合数?
2.填空:1--12的质数有 ,合数有 。
3.观察:2、3、5、7、11……等质数,能写成比它本身小的两个数相乘的形式吗?为什
么?4、6、8、9、10、12……合数,能写成比它本身小的两个数相乘的形式吗?为什么?
二、揭示课题
下面我们学习每个合数能否用几个质数相乘的形式表示出来。(板书课题)
三、探索研究
1.探究学习
(1)把6、28、60写成比它本身小的两个数相乘的形式。
6=2×3 28=4×7 60=6×10 60=2×30 60=4×15 …
(2)写出的两个数中如果还是合数的,再用上面的方法继续写下去。
6=2×3
28=2×2×7
60=2×2×3×5
(3)从上面的例子可以看出什么来?
师生归纳:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数
的因数,叫做这个合数的质因数。
考考你:把13和15分解质因数。
揭示:把一个合数用质因数(既是质数又是因数)相乘的形式表示出来,叫做分解质因
数。(板书课题:分解质因数)
如把6、28、60分解质因数可以写成:
6=2×3
28=2×2×7
60=2×2×3×5
书写格式说明:要分解的合数写在等号左边,把它的质因数相乘的形式写在等号的
右边。质因数按从小往大的顺序排列。
2.学习用短除法分解质因数。
(1)介绍短除法。
它是笔算除法的简化“ ”叫做短除号。
除数…2 6 …被除数
3 …商
(2)用短除法分解质因数。
2 28 2 60
2 14 2 30
7 3 15
5
28=2×2×7 60=2×2×3×5
(3)强调:用质数去除,一直除到质数为止。
(4)再让学生讨论一下:分解质因数应注意什么?
四、课堂实践
1.判断:
(1)由于12=2×2×3那么12的质因数有2,2,3( )
(2)把77分解质因数是77=1×7×11( )
(3)把14分解质因数2×7=14( )
(4)把27分解质因数是27=3×3×3( )
2.用短除法把下面各数分解质因数。
16 20 22 26 90 180
3.思考:一个长方体,它的长,宽,高,是三个连续的自然数,已知它的体积是60立
方厘米,它的长,宽,高各是多少?
4.把1---9中任意三个连续的自然数看成一个三位数,这样的三位数共有多少个?他们
是质数,还是合数?为什么?
5.在下面8个质数卡片中,任意两个数的和是奇数,还是偶数?任意两个数的积是奇数
还是偶数?为什么?
五、课堂小结:
说说自己本节课的收获。
六、课堂作业:
做练习七的第5题。