五年级数学下册-分解质因数课件
- 格式:ppt
- 大小:966.50 KB
- 文档页数:31
分解质因数的方法问题导入把84分解质因数。
方法讲解方法一枝状图分解法(1)方法分析。
先把84分解成两个数(1除外)相乘的形式。
如把84分解成2×42,2是质数,不需再分解;42是合数,需要再分解,42可以分解成2×21……直到所有的因数都是质数为止。
(2)分解过程。
84=2×2×3×7(3)表现形式。
写分解结果时,先写合数,再在合数右边写等号,最后把分解的质数用连乘的形式写在等号的右边,即84=2×2×3×7。
(4)也可以先把84分解成4×21或6×14,再依次分解。
分解过程如下:84=2X2X3X7 84=3X2X7X2小结:从把84分解质因数的过程中可以看出,84的质因数是2,3,2,7这四个数,分解结果中只是这四个数的顺序有所不同。
方法二短除法(1)方法分析。
①先把要分解的数84写在短除号“”里。
②再用84的质因数依次去除,一般从最小的质数开始,直到商是质数为止。
③最后把每个除数和最后的商写成连乘的形式。
(2)分解过程。
84=2×2×3×7把84分解质因数也可按如下方式进行分解。
84=7×3×2×284=3×2×7×2 84=7×2×3×2……归纳总结1.分解质因数的方法:(1)枝状图分解法;(2)短除法。
2.分解质因数的书写方法:把要分解的数写在等号的左边,把分解的质数用连乘的形式写在等号的右边。
第三十一讲分解质因数法通过把一个合数分解为两个或两个以上质因数,来解容许用题的解题方法叫做分解质因数法。
分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。
分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开拓解题思路,启迪创造性思维。
例1 一块正方体木块,体积是1331立方厘米。
这块正方体木块的棱长是多少厘米?〔适于六年级程度〕解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。
例2 一个数的平方等于324,求这个数。
〔适于六年级程度〕解:把324分解质因数:324= 2×2×3×3×3×3=〔2×3×3〕×〔2×3×3〕=18×18答:这个数是18。
例3 相邻两个自然数的最小公倍数是462,求这两个数。
〔适于六年级程度〕解:把462分解质因数:462=2×3×7×11=〔3×7〕×〔2×11〕=21×22答:这两个数是21和22。
*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC 是一个三位数。
求ABC代表什么数?〔适于六年级程度〕解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。
1673=239×7答:ABC代表239。
例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?〔适于六年级程度〕解:先把2304分解质因数,并把分解后所得的质因数分成积一样的两组质因数,每组质因数的积就是正方形的边长。
2304=2×2×2×2×2×2×2×2×3×3=〔2×2×2×2×3〕×〔2×2×2×2×3〕=48×48正方形的边长是48米。
苏教版五年级上册数学第24讲分解质因数(2)讲义许多题目,特别是一些竟赛题,初看起来很玄奥,但它们都与乘积有关,对于这题日,我们可以用分解质因数的方法来解。
因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。
例1、三个质数的和是80,这三个数的积最大可以是多少?练习:1、如果A+B=70,A×B=1161,A比B大,那么A-B等于多少?2、把1,2,3,4,5,6,7,8,9九张卡片分给甲、乙、丙三人,每人各3张。
甲说:“我的三个数的积是48。
”乙说:“我的三个数的和是16。
”丙说:“我的三个数的积是63。
”问甲、乙、丙各拿了哪几张卡片?3、长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?例2、一个两位数除310余37这个数可以是( )或( )。
练习;1、237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。
2、5100除以一个三位数,余数是95,这个三位数最大是多少?3、有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长例3、某班同学在班主任老师的带领下去植树,学生恰好平均分成3组,如果师生每人种树一样多,一共种了1073棵,那么平均每人种了多少棵?练习:1、一个长方体的长、宽、高是三个连续的自然数。
已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?2、老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支。
问每支钢笔原价多少元?3、王老师带同学们擦玻璃,同学们恰好平均分成3组。
如果师生每人擦的块数同样多,一共擦了11块,那么,平均每人擦了多少块?例4、把和约分练习:请你用跟例题相同的方法把下面的几个分数约分。
例5、小明用21.6元买了一种贺卡若干张,如果每张贺卡的价钱便宜1角,那么他还能多买3张。
问小明买了多少张贺卡?练习:1、求2310的约数中,除它本身以外最大的约数是多少?2、自然数a乘以2376,所得的积正好是自然数b的平方。