人教版数学五年级下册分解质因数
- 格式:doc
- 大小:15.00 KB
- 文档页数:3
五年级数学下册知识点归纳第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。
通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8 个正方体可拼成较大的正方体,27 个64 个125 个。
都可拼成较大正方体。
二、图形的运动1、旋转:物体或图形围绕一个定点沿着一个方向转动一定的角度的现象叫做旋转。
如风扇的叶片旋转。
定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转三要素:①旋转中心,固定不变;②旋转方向有顺时针、逆时针;③旋转角度有:常见的有30°、45°、60°90°、180°、270°。
(3)长方形绕中心点旋转180 度与原来重合,正方形绕中心点旋转90 度与原来重合。
等边三角形绕中点旋转120 度与原来重合。
(4)旋转的性质:①图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;②其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,位置和方向发生改变,旋转中心是唯一不动的点,③两组对应点分别与旋转中心的连线所成的角度相等,都等于旋转角;(5)怎样画图形旋转的形状:(1)先观察原图形的形状特征找准关键点,(2)找准旋转中心、旋转方向、旋转角度;(3)使用直角三角板的顶点与旋转中心重合,则该图形旋转后的形状就在三角板另一条边上;(4)确定各对应点的长度,用虚线标出来;(5)将每个对应点连接并标出名称。
最全面人教版五年级数学下册知识点归纳总结一、图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
3、对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。
2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。
由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
3、从一个方向看到的图形摆立体图形,有多种摆法。
4、从多个角度观察立体图形:先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
找因数的方法:①一个数的因数的个数是有限的,其中最小的因数是1, 最大的因数是它本身。
②一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按能不能被2 整除来分:奇数、偶数奇数:不能被2整除的数。
偶数:能被2整除的数。
最小的奇数是1, 最小的偶数是0。
个位上是0, 2, 4, 6, 8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90, 最小的三位数是120。
3、自然数按因数的个数来分:质数、合数质数:有且只有两个因数,1和它本身。
合数:至少有三个因数,1和它本身、别的因数。
1: 只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2, 最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1, 就说这几个数互质。
新人教版五年级数学下册概念及公式兴义市七舍镇七舍小学:陈兴艳因数和倍数1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。
2、因数和倍数是相对的,不能单独说因数和倍数。
3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。
一个数的最大因数=最小倍数=它本身。
4、a÷b=c(a、b、c都是整数),我们就可以说,能被b整除,也可以说b能整除a.(例10÷2=5,可以说10能被2整除,2能整除10)。
5、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5的倍数特征:个位上是0或5的数都是5的倍数。
3的倍数特征:一个数各个数位位上的数的和是3的倍数,这个数就是3的倍数。
2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。
判断奇数和偶数的依据是:是否是2的倍数。
自然数不是奇数就是偶数。
奇数:不是2的倍数的数叫奇数。
(就是我们生活中常说的单数)偶数:是2 的倍数的数叫偶数。
(就是我们生活中常说的双数)6、质数:一个数,如果只有1和它本身两个因数,这样的数叫质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断质数和合数的依据是:根据因数的个数。
一个质数只有两个因数,一个合数至少有两个因数。
7、1既不是质数也不是合数。
一个自然数除了质数还有合数,还有1。
8、既是质数又是偶数的一位数是2,既是奇数又是偶数的最小的一位数是9,最小的两位数是15。
9、100以内质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、11、最小的质数是2,最小的合数是4,奇数中最小的合数是9,所有的偶数中只有一个质数是2,其它所有的质数都是奇数。
12、一个自然数不是奇数就是偶数。
(√)一个自然数不是质数就是合数。
人教版五年级下册数学第二单元知识点总结第一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
【×】改正:6是3和2的倍数,3和2是6的因数。
练习:【1】8×5=40,【】和【】是【】的因数,【】是【】和【】的倍数。
【2】因为36÷9=4,所以【】是【】和【】的倍数,【】和【】是【】的因数。
【3】在18÷6=3中,18是6的【】,3和6是【】的【】。
【4】在14÷7=2中,【】能被【】整除,【】能整除【】,【】是【】的倍数,【】是【】的因数。
【5】若A÷B=C【A、B、C都是非零自然数】,则A是B的【】数,B是A的【】数。
【6】如果A、B是两个整数【B≠0】,且A÷B=2,那么A是B的,B是A的。
【7】判断并改正:因为7×6=42,所以42是倍数,7是因数。
【】因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
【】5是因数,15是倍数。
【】甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
【】【8】甲数×3=乙数,乙数是甲数的【】。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:【1】有5÷2=2.5可知【】A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数【2】36÷5=7……1可知【】A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数【3】属于因数和倍数关系的等式是【】A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有【】。
2023-2024学年五年级下学期数学第一单元合数、质数(教案)一、教学目标1. 让学生理解合数和质数的概念,能够识别合数和质数。
2. 使学生掌握分解质因数的方法,能够对合数进行分解质因数。
3. 培养学生的观察能力、分析能力和逻辑思维能力。
二、教学内容1. 合数和质数的概念2. 合数和质数的识别3. 分解质因数的方法三、教学重点与难点1. 教学重点:合数和质数的概念,分解质因数的方法。
2. 教学难点:合数和质数的识别,分解质因数的过程。
四、教学过程1. 导入:通过生活中的实例,引导学生理解合数和质数的概念。
2. 新课:讲解合数和质数的定义,让学生学会识别合数和质数。
3. 活动一:让学生找出20以内的合数和质数,并进行分类。
4. 活动二:让学生尝试对一些合数进行分解质因数,总结分解质因数的方法。
5. 课堂小结:对本节课的内容进行总结,强调合数和质数的概念以及分解质因数的方法。
6. 课后作业:布置一些练习题,让学生巩固本节课所学内容。
五、教学评价1. 课堂参与度:观察学生在课堂上的发言和参与情况,了解学生对知识的掌握程度。
2. 练习完成情况:检查学生课后作业的完成情况,评估学生对知识的理解和运用能力。
六、教学反思1. 在教学过程中,要注意激发学生的学习兴趣,引导学生主动参与课堂活动。
2. 在讲解合数和质数的概念时,要尽量用简单易懂的语言,让学生容易理解。
3. 在进行分解质因数的练习时,要注重培养学生的观察能力和分析能力,让学生能够找到合数的最小质因数。
4. 在教学评价中,要及时了解学生的学习情况,对学生的学习方法进行指导,提高学生的学习效果。
七、教学资源1. 教材:《数学》五年级下册2. 教学课件:PPT或黑板八、教学时间安排1. 导入:5分钟2. 新课:10分钟3. 活动一:10分钟4. 活动二:10分钟5. 课堂小结:5分钟6. 课后作业:5分钟九、教学策略1. 启发式教学:通过提问、讨论等方式,引导学生主动思考,培养学生的思维能力。
人教版五年级下册经典易错整理1.36的因数有( )个,把它分解质因数( )2.一根电线长12米,用去它的25 ,还剩下它的( ),如果用去25米,还剩下( )3.A=2×2×M ×5×7 B=2×3×M ,A 和B 的最大公因数是( )。
A 和B 的最小公倍数是( )4.把10米长的铁丝剪去15米,还剩下( )米。
5米长的绳子剪去它的15,还剩下( )米。
5、 68的分子加上9,分母加( )分数的大小才不会变 6.同时是2、3倍数的最小三位数是( ) 同时是3、5倍数的最小三位数是( )7.20以内所有质数的和是( );10以内所有合数的和是( )8.一个三位数,个位是最小的合数,十位是最小的质数,百位是最小的奇数,这个三位数是( )9.一个数既是8的倍数,又是48的因数,这个数可能是( ) 10.20以内既是奇数,又是合数的数有( )11.分母是6的所有最简真分数的和是( ),分母是8的所有真分数的和是( )12.一个正方体的棱长总和是120cm ,它的表面积是( ), 体积是( )13. 一辆汽车从甲地开往乙地,已经行了全程的72,剩下的路程比已行的多全程的()。
14.用四个不同的数字组成一个同时是2、3、5倍数的最大四位数是()15.把一个涂色的大立方体,割成8个小立方体,3面涂色的有()块。
把一个涂色的大立方体,割成27个小立方体,3面涂色的有()块。
2面涂色的有()块,1面涂色的有( =)块,没有涂色的有()块16.A=2×2×3×5×7 B=2×3×7,A和B的最大公因数是()。
A和B的最小公倍数是()17、一个分数的分子扩大3倍,分母缩小2倍,分数值()。
一个分数的分子缩小3倍,分母扩大2倍,分数值()。
一个分数的分子扩大3倍,分母扩大3倍,分数值()18.正方体的棱长扩大a倍,它的棱长总和扩大( )倍,表面积扩大( )倍,体积扩大( )倍。
人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
分解质因数知识导航1.质数和合数: 只有1和它本身两个因数的数叫质数;除了1和它本身还有别的因数,就叫合数; 1既不是质数,也不是合数。
2.质因数的定义:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫这个合数的质因数.3.分解质因数的定义:把一个合数用质因数相乘的形式表示出来. 4.分解质因数的方法:(1)塔形分解: (2)短除法:28=2×2×7 28=2×2×7×××7227428例题分析【理解一】质数和合数.1.找出1-20各数的因数,看看有什么规律:只有一个因数的数 只有1和它本身两个因数的数 有两个以上因数的数2.质数:只有1和它本身两个因数的数。
3.合数:除了1和它本身还有别的因数的数。
4.在自然数里,1既不是质数也不是合数。
5.找出100以内的质数,做一个质数表。
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99 100例1.在括号里填上适当的质数。
18=( )+( )+( )24=( )+( )=( )+( )=( )+( )例2.A、B、C是三个不同的质数,且A-B=C,若得数最小,请写出一组符合要求的数:A=( )、B=( )、C=( )。
例3.一个四位数,千位上是最小的质数,百位上是最小的合数,十位上既不是质数也不是合数,个位上是10以内最大的质数,这个数是多少?例4.两个质数的和是 40,这两个质数分别是多少?它们的乘积最大是多少?巩固练习1.一个长方形的边长是以厘米为单位的质数,那么周长是以厘米为单位的( ).A.质数 B.合数 C.无法确定2.如果两个不同的质数相加还得到质数,其中一个质数必定是( )。
五年级数学下册知识点归纳总结一、图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
3、对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转三要素;旋转中心、旋转角度和旋转方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
五年级数学下册概念公式一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b = c(a、b、c都是不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
比如:2×6 = 12 。
12是2的倍数,也是6的倍数。
特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大倍数。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
如:4,6,15,49都是合数三、长方体的认识、表面积、体积和容积1. 长方体是由6个长方形(特殊情况有两个相对的面是正方形),围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体 有6个面,8个顶点,12条棱, 12条棱可以分为三组:4条长,4条宽,4条高2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
正方体是特殊的长方体。
(长宽高都相等)3. 公式: 长方体的棱长总和 =(长+宽+高)×正方体的棱长总和 = 棱长×124. 长方体6个面的总面积叫作它的表面积。
长方体相对的面的面积相等,长方体的表面积=(长×宽+长×高+宽×高)×2 2)(⨯⨯+⨯+⨯=h b h a b a S正方体6个面的总面积叫作它的表面积,6个面的面积都相等。
正方体的表面积=棱长×棱长×6 266a a a S =⨯⨯=5. 物体所占空间的大小叫作物体的体积。
计量体积要用体积单位常用的体积单位有:立方厘米(cm 3),立方分米(dm 3),立方米(m 3)。
1立方米=1000立方分米 (大约一个指尖的体积) 1立方分米=1000立方厘米 (大约一个粉笔盒的体积) 1立方米=1000000立方厘米1 m 3=1m ×1m ×1m 1 dm 3=1dm ×1dm ×1dm =10dm ×10dm ×10dm =10cm ×10cm ×10cm =1000dm 3 =1000cm 3概念:容器所能容纳物体的体积叫作容器的容积。
2 因数与倍数一、理解因数和倍数的意义,掌握找一个数的因数和倍数的方法。
1.在整数除法中,如果商是整数而没有余数,我们就说被.除数是除数的倍数........,.除数是被除数的因数.........。
如:在算式c ÷a=b (a 、b 、c 均是非0自然数)中,a 和b 是c 的因数,c 是a和b 的倍数。
一个数的因数的个数是有限的.............,.其中最小的因数.......是.1.,.最大的因数是它本身。
一个数的倍数的个数是无限的.......................,.最小的倍数是它本身.........,.没有最大的倍数.......。
2.找一个数的因数的方法:(1)列乘法算式找......,.根据因数的意义,有序地写出两个整数相乘得此数的所有乘法算式,算式中的每个乘数都是该数的因数。
(2)列除法算式找......,.用此数除以大于等于1而小于它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。
以找24的因数为例:(1)列乘法算式: (2)列除法算式: 24=1×24 24÷1=24=2×12 24÷2=12 =3×8 24÷3=8=4×624÷4=624的因数有1,2,3,4,6,8,12,24。
3.找一个数的倍数的方法:(1)列乘法算式找......,用这个数依次与非0自然数相乘,所乘之积就是这个数的倍数。
(2)列除..法算式找....,看哪些数除以这个数,商是整数而无余数,这些数就是这个数的倍数。
以找9的倍数为例:(1)列乘法算式: (2)列除法算式: 9×1=9 9÷9=1 9×2=18 18÷9=2 9×3=27 27÷9=3 9×4=36 36÷9=4 9×5=45 45÷9=5…………9的倍数有9,18,27,36,45……温馨提示:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数...(一般不包括.....0)..。
人教版五年级下册数学易错题观察物体复习要点:1、从不同角度观察一个物体,一次最多看到三个相邻的面。
2、根据摆好的立体图形画出看到的图形,先看正面,按从上往下的顺序观察,再看上面,按从前往后的顺序观察,再看左面按从左往右的顺序观察。
易错题:3、根据画好的正面侧面上面图形来摆出立体图形按照先看上面确定需要几块积木,在观察正面和侧面进行调整。
易错题:1,2,用5个小正方体搭成一个长方体,如果从左面看到的是,从上面看到的是,有()种不同的摆法。
3,一个立体图形,从正面看到是,从左面看是,要搭成这样的立体图形,至少要用()个小正方体,最多要用()个小正方体。
4,一堆同样大小的正方体拼搭图形,从不同方向看到的图形分别如图,那么至少有()块同样的正方体。
5如图(1)是从上面看一些小正方体所搭几何体的平面图,方格中的数字表示该位置的小正方体的个数。
请你在图(2)的方格纸中分别画出这个几何体从正面和左面看到的图形。
因数和倍数复习要点:1、A÷B=C,(A,B,C均为整数且B不等于0)则A是B和C的倍数。
B和C是A的因数,倍数和因数是互相依存的2、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)3、一个数的因数的个数是有限的,一个数的最小因数是1,最大的因数是他本身。
4、一个数的倍数的个数是无限的,一个数的最小倍数是他本身,没有最大的倍数。
5、2的倍数的特点:个位上是0,2,4,6,8的数都是2的倍数。
5的倍数的特点:个位上是0或5的数,是5的倍数。
既是2的倍数又是5的倍数的特点:个位是0。
3的倍数的特点:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数)。
奇数:不是2的倍数的数叫做奇数。
6、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
最小的奇数是1;最小的偶数是0;最小的质数是2;最小的合数是4;8是一位数中最大的偶数;9是一位数中最大的奇数;1不是质数,也不是合数。
第3讲 分解质因数第一部分:趣味数学教室装饰中的数学问题六一儿童节快要到了,班委的同学聚在一起商量如何装饰教室,班长刘小娟说:“我们剪一些小彩旗吧,最宽的41米,最窄的51米,中间再剪4面不同宽度的,肯定非常漂亮。
”大家都非常赞同这个建议。
这时张山同学问 :“那中间的4面彩旗分别应该是多宽呢?”小乐说:“我们只要能找出4个小于41而大于51的分数来就可以了。
”大家想了半天,都说:“这样的太难找了。
”这时刘小娟说:“我找到了。
”同学们,你们知道刘小娟找到的是哪些数吗?分析:将41和51通分为10025和10020,大于10020小于10025的同分母分数有10021,10022,10023,10024,所以中间4面彩旗的宽度分别是10021米,10022米,10023米,10024米。
答案:4面彩旗的宽度分别是10021米,10022米,10023米,10024米。
小试牛刀:同学们看了上面的解决方法,你觉得41和51之间能找到多少个分数?自己动手试一试吧?第二部分:奥数小练一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
【例题1】把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?【思路导航】先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。
练习一:1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?2.195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3.甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。
2023人教版五年级数学下册《分解质因数》的教学反思范文(精选3篇)五年级数学下册《分解质因数》的教学反思1有以下几个问题值得反思:第一,质因数、分解质因数的意义和用短除法分解质因数的教学落实不到位。
通过学生的观察发现,引出了质因数的定义后,学生对质因数的理解还是可以的,但对分解质因数的意义就处理得不够好,我只是通过60=2×2×3×5这个例子指出60这个合数可以通过2、3、5这几个60的质因数相乘的形式表示出来,像这样的表示方法就叫做分解质因数,接着课件显示分解质因数的意义,指出分解质因数的书写格式要注意的地方后就直接进入几个式子是否是分解质因数的判断练习。
其实在练习之前,我还可以抓住质因数和分解质因数这两个意义的重点词提出质因数和分解质因数是两个不同的概念,指出质因数是一个质数,这个质数是对应合数的因数,而分解质因数是一个合数的表示形式,是用几个质因数想乘的形式表示一个合数。
经过这一强调后再来做相关练习可能效果会更好。
第二,要明白什么时候该老师讲,什么时候该学生讲。
在教学短除法分解质因数时,我本来的设想是想让学生去说,想经过他们的思考去认识短除法分解质因数的一般规律,这样印象会更深刻。
想不到这种方法并没有收到很好的效果,即使后来老师的点评中也强调了各步骤中的细节问题,但在学生练习时还是出现了很多问题。
所以像短除法这样操作性步骤性强的基础性的知识,刚开始还是由老师来讲解比较好,因为学生的第一印象很重要,最初灌输的知识它们很快就会定型,所以繁琐性的问题还是由老师讲比较好。
但如果是学生完全可以通过观察发现的知识点,还要由学生自己去发现,老师作引导便可。
第三,清楚课堂上学生才是主角,多给学生展示的机会。
在学生回答问题时,没有给太多的时间让学生思考,有几次在发现学生迟疑了一点,我就会忍不住提示他。
整节课下来,个人感觉也是我讲得多,学生讲得少。
用拍电影做个比喻,老师既是编剧,又是导演,更身担策划,舞台设计等多重身份,但即使这样,主角永远都是学生,学生才是学习的主体。
分解质因数
教学要求:①使学生理解质因数和分解质因数的概念。
②初步学会分解质因数的方法。
③培养学生分析和推理的能力。
教学重点:①质因数和分解质因数的概念。
②分解质因数的方法。
教学难点:分清因数和质因数,质因数和分解质因数的联系和区别。
教学用具:投影仪。
教学过程
一、创设情境
1.回答:什么叫做质数?什么叫做合数?
2.填空:1~12的质数有,合数有。
3.观察:2、3、5、7、11……等质数,能写成比它本身小的两个数相乘的形式吗?为什么?4、6、8、9、10、12……合数,能写成比它本身小的两个数相乘的形式吗?为什么?
二、揭示课题
下面我们学习每个合数能否用几个质数相乘的形式表示出来。
(板书课题)
三、探索研究
1.小组合作学习
(1)把6、28、60写成比它本身小的两个数相乘的形式。
6=2×3 28=4×7 60=6×10 60=2×30 60=4×15 …
(2)写出的两个数中如果还是合数的,再用上面的方法继续写下去。
6=2×3
28=2×2×7
60=2×2×3×5
(3)从上面的例子可以看出什么来?
师生归纳:每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数。
做练习十三的第7题,学生口答。
⊙把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(板书课题:分解质因数)
如把6、28、60分解质因数右以写成:
6=2×3
28=2×2×7
60=2×2×3×5
书写格式说明:要分解的合数写在等号左边,把它的质因数相乘的形式写在等号的右边。
质因数按从小往大的顺序排列。
2.学习用短除法分解质因数。
(1)介绍短除法。
它是笔算除法的简化“”叫做短除号。
除数…2 6 …被除数
3 …商
(2)用短除法分解质因数。
2 28 2 60
2 14 2 30
7 3 15
5
28=2×2×7 60=2×2×3×5 (3)学生小结用短除法分解质因数的方法后看教材第62页的结语。
(4)再让学生讨论一下:分解质因数应注意什么?
四、课堂实践
做练习十三的第8题,让学生说后集体订正。
五、课堂小结
学生小结今天学习的内容。
六、课堂作业
1、做练习十三的第8题。
2、学有余力的同学做练习十三的第17*题。