七年级数学上册第1章有理数1.6有理数的乘方第1课时有理数的乘方教案新版湘教版
- 格式:doc
- 大小:171.31 KB
- 文档页数:3
湘教版数学七年级上册1.6《有理数的乘方》说课稿1一. 教材分析《有理数的乘方》是湘教版数学七年级上册第1章第6节的内容。
本节内容是在学生已经掌握了有理数的加减乘除、相反数、绝对值等概念的基础上进行讲解的。
有理数的乘方是数学中一个非常重要的概念,它不仅在生活中有着广泛的应用,而且也是学习更高年级数学的基础。
本节内容主要包括有理数的乘方定义、乘方的运算规则、乘方的性质等。
学生需要理解乘方的概念,掌握乘方的运算规则,了解乘方的性质,并能够运用乘方解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除、相反数、绝对值等概念有一定的了解。
但是,学生对乘方的理解可能还存在一定的困难,因为乘方是一个比较抽象的概念。
此外,学生可能对乘方的运算规则和性质不够熟悉,需要通过实例进行讲解和练习。
三. 说教学目标1.知识与技能目标:学生能够理解有理数的乘方概念,掌握有理数的乘方运算规则,了解有理数的乘方性质。
2.过程与方法目标:通过实例讲解和练习,培养学生运用乘方解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的逻辑思维能力。
四. 说教学重难点1.教学重点:有理数的乘方概念,乘方的运算规则,乘方的性质。
2.教学难点:乘方的运算规则和性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用讲授法、实例讲解法、练习法、小组讨论法等。
2.教学手段:黑板、粉笔、多媒体课件等。
六. 说教学过程1.引入新课:通过生活中的实例,如计算面积、体积等,引出乘方的概念。
2.讲解乘方:讲解乘方的定义,通过示例演示乘方的运算过程,让学生理解乘方的意义。
3.乘方的运算规则:讲解乘方的运算规则,如乘方的乘法、除法、幂的乘方等,并通过实例进行演示和练习。
4.乘方的性质:讲解乘方的性质,如乘方的零次幂、乘方的正负性等,并通过实例进行演示和练习。
5.运用乘方解决实际问题:通过实例,让学生运用乘方解决实际问题,如计算物理中的速度、路程等。
科学计数法一、学习目标:1.知道科学记数法,会用科学记数法表示数;2.经历用科学记数法表示大数的过程,体验科学记数法表示数的优越性;二、学习重难点:1、会用科学记数法表示数2、会根据科学记数法表示的数求出原数.三、预习感知1、由乘方的意义知道:101=________,102=________,103=________,104=________,105=________,…2、10 的n次幂等于10 … O ,那么在l 后面有多少个0 ?反过来,把数表示成乘方的形式,100 =__________,1000 =___________ , 10000=___________,100000 = ______________,…3、数10 …在l 后面有n个0 .怎样用乘方表示这个数?利用10 的乘方可表示些大数.如:150000000=1.5×__________=1.5×____________。
4、议一议:①上面所说的数1.5×108怎样读?②把数150000000写1.5×108的形式,有什么优点?5、把一个绝对值大于10 的数记做_____________的形式,其中a是整数数位只有一位的数,这种记数法叫做____________.四、合作探究探究一:有理数乘方的意义阅读教材P41“议一议〞之前的内容,寻找规律,完成下面内容:在小学我们就学过,2×2可以简记为22,2×2×2可以简记为23,那么2×2×2×2可以简记为,2×2×2×2×2可以简记为。
类似地,〔-2〕×〔-2〕= ;〔-2〕×〔-2〕×〔-2〕= ;〔-2〕×〔-2〕×〔-2〕×〔-2〕= ;〔-2〕×〔-2〕×〔-2〕×〔-2〕×〔-2〕= 。
第二讲有理数的运算一、引学1、有理数的运算包括、、、、等五种。
2、有理数的加法法则:同号两数相加,;异号两数相加,;互为相反数的两数相加;一个数与0相加,。
3、有理数的减法法则:减去一个数,等于。
4、有理数的乘法法则:异号两数相乘,并把;同号两数相乘,并把;任何数与0相乘,。
5、有理数的除法法则:除以一个数(非零数),等于。
6、有理数的乘方法则:求n个相同的因数的的运算,叫做乘方。
正数的任何正整数之幂都是;负数的奇次幂是,负数的偶次幂是;0的任何次幂都是。
7、有理数的混合运算:先算,再算,最后算,如果用括号,就。
8、运算律:加法交换律:a b+=;加法结合律:()++=。
a b c乘法交换律:a b⨯=;乘法结合律:()a b c⨯⨯=。
乘法对加法的分配律:()⨯+=。
a b c9、倒数:的两个数互为倒数。
0 倒数。
10、科学记数法:把一个绝对值大于10的数记成的形式(其中1≤a<10,n为正整数),这种记数方法叫做科学记数法。
二、引思1、2的倒数是( ) A. 12 B. 12- C. 2 D.﹣2 2、计算:12-+的结果是( )A .1-B .1C .3-D .33. 2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23 4、下列等式成立是( ) A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 5、根据我国第六次人口普查公布的数据,登记的全国人口数量约为1340 000 000人,这个数据用科学记数法表示为( )A.134×107人B.13.4×108 人C.1.34×109人D.1.34×1010人6、为改善湘潭河东地区路网结构,优化环境,增强城市功能,湖南湘潭市河东风光带于2010年7月18日正式开工,总投资为880000000元,用科学计数法表示这一数字为_________元.7、如图,是一个数值转换机.若输入数为3,则输出数是__ ____.8、规定一种新的运算:ba b a 11+=⊗,则=⊗21__ __.三、引练:1、计算:⑴.(6)(3)-+- ⑵.8(13)+-⑶.813-+ ⑷.(7)4(3)(4)5-++-+-+2、计算⑴.7(3)-- ⑵.(8)(13)---⑶.(8)(3)75---+- ⑷.48145-+-+( )2-13、计算:⑴.(7)(3)-⨯- ⑵.(7)3-⨯⑶.(4)(18)(25)-⨯-⨯- ⑷.15724()3612-⨯-+4、计算:⑴.(9)(3)-÷- ⑵.(9)3-÷⑶.1233-÷⨯ ⑷.2411()()()3152-⨯-÷-⨯-5、计算:⑴.3(2)- ⑵.2(3)- ⑶.221(5)()5-⨯-6、计算: ⑴.122(2)()2-÷⨯-÷- ⑵.94(81)(16)49-÷⨯÷- ⑶.2111()()32305⎡⎤-÷⨯-⎢⎥⎣⎦⑷.221(3)323-⨯-⨯四、引伸:1、为了推进全民医疗保险工作,截至2011年5月31日,今年中央财政已累计下拨医疗卫生补助金1346亿元.这个金额用科学记数法表示为 元.2、按下面程序计算:输入3x =,则输出的答案是__ _ .3、对任意实数a b 、,都有2a b a b ⊗=-,例如,232327⊗=-=,那么21________⊗=. 4、 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.5、填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .6、已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 7、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4 8、计算:⑴.(13599)(246100)+++⋅⋅⋅+-+++⋅⋅⋅+⑵.211⨯+321⨯+431⨯+…+120102011⨯。
第一章有理数1.5 有理数的乘方1.5.1 乘方第1课时一、教学目标【知识与技能】1.正确理解乘方、幂、指数、底数等概念.2.会进行有理数乘方的运算.【过程与方法】通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.【情感态度与价值观】培养探索精神,体验小组交流、合作学习的重要性.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确理解乘方的意义,掌握乘方运算法则.【教学难点】正确理解乘方、底数、指数的概念,并合理运算.五、课前准备教师:课件、直尺、计算器等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8844米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?(出示课件2)(二)探索新知1.师生互动,探究乘方的意义教师问1:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的面积为2×2×2=8(cm2).观察式子2×2,2×2×2有何共同特点?学生回答:都是相同因数的乘法.教师问2:为了简便,我们可以将它们记作什么,读作什么?学生回答:2×2记作22,读作2的平方;2×2×2记作23,读作2的立方.教师问3:某种细胞每30分钟便由一个分裂成两个,经过3小时这种细胞由1个能分裂成多少个?(出示课件4)分裂方式如下所示:(出示课件5)学生讨论后回答:2×6=12.教师问4:这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?(出示课件6)师生共同解答如下:一次:2个两次:2×2个三次:2×2×2个四次:2×2×2×2个六次:2×2×2×2×2×2个教师问5:请比较细胞分裂四次后的个数式子:2×2×2×2和细胞分裂六次后的个数式子: 2×2×2×2×2×2. 这两个式子有什么相同点?(出示课件7)学生回答:它们都是乘法,并且它们各自的因数都相同.教师问6:这样的运算能像平方、立方那样简写吗?学生回答:2×2×2×2记作24,2×2×2×2×2×2记作26.教师问7:24读作2的4次方(幂),26读作2的6次方(幂).同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?学生回答:(-2)×(-2)×(-2)×(-2)记作(-2)2,读作负2的四次方(幂).(-25)×(-25)×(-25)×(-25)×(-25)记作(-25)5,读作负五分之二的五次方(幂).教师问8:a·a·a·a·a·a可以记作什么?读作什么?学生回答:a·a·a·a·a·a可以记作a6,读作a的六次方(幂)教师问9:进一步提出:a·a·…·a,(n个a相乘)(n为正整数)呢?学生回答:可以记作a n,读作a的n次方.教师讲解:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说a可以取任意有理数.总结点拨:(出示课件8)一般地,n个相同的因数a相乘,记作a n,读作“a的n次幂(或a的n次方)”,即教师讲解:求n个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.总结点拨:(出示课件9)这种求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂.一个数可以看作这个数本身的一次方,例如,8就是81,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.例1:计算:(出示课件11)2)3.(1)(–4)3;(2)(–2)4;(3)(-3师生共同解答如下:解:(1)(–4)3=(–4)×(–4)×(–4)=–64;(2)(–2)4 =(–2)×(–2)×(–2)×(–2)=16;(3).322228333327⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭教师问10:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?师生共同解答如下:(出示课件12)负数的奇次幂是负数,负数的偶次幂是正数.正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.例2:用计算器计算(–8)5和(–3)6.(出示课件14)师生共同解答如下:开启计算器后按照下列步骤进行:8 5显示:(-8)^ 5-32768 即(-8)5=-327683 6显示:(-3)^ 6729 即(-3)6=7298 5 =显示:-327683 6显示:729所以(-8)5=-32768 (-3)6=729 例3:计算:(出示课件16)(1)22 -3-3⨯()()(2)–23×(–32)(3)64÷(–2)5(4)(–4)3÷(–1)200+2×(–3)4师生共同解答如下:解:(1)22(-3)(-)329(-)6;3=⨯=-⨯(2)–23×(–32)= –8×(–9)=72;(3)64÷(–2)5=64÷(–32)= –2;(4)(–4)3÷(–1)200+2×(–3)4= –64÷1+2×81=98教师问11:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?(出示课件17)学生回答:先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算.(三)课堂练习(出示课件19-23)1.计算(–3)2等于()A.5 B.–5C.9 D.–92.计算(–1)2017的结果是()A. –1B. 1C. 2017D. –20173.下列说法中正确的是( )A. 23表示2×3的积B. 任何一个有理数的偶次幂是正数C. -32与(-3)2互为相反数D.一个数的平方是94 ,这个数一定是 32 4.在 – |–3|3,– (–3)3, (–3)3 , –33中,最大的数是( )A.– |–3|3B.– (–3)3C. (–3)3D. –335.对任意实数a,下列各式不一定成立的是( )A. a 2= (–a)2B. a 3= (–a)3C. |a| = |–a|D. a 2 ≥06.填空:(1)–(–3)2= ______ ; (2)–32= ___________ ;(3)(–5)3= _______ ; (4)0.13= ___________ ;(5)(–1)9= ________ ; (6)(–1)12= _________;(7)(–1)2n =_________ ; (8)(–1)2n+1=________;(9)(–1)n =____________. .7.计算:(-6)2×(31-21) . 8.厚度是0.1毫米的纸,将它对折1次后,厚度为0.2毫米.(1)对折3次后,厚度为多少毫米?(2)对折7次后,厚度为多少毫米?(3)用计算器计算对折30次后纸的厚度.参考答案:1.C2.A3.C4.B5.B6.(1)-9;(2)-9;(3)-125;(4)0.001;(5)-1;(6)1;(7)1;(8)-1;(9)-1(当n 为奇数时),1(当n 为偶数时)7.解:(-6)2×(31-21)=36×21-36×31=18-12=6 8.(1)0.8毫米;(2)12.8毫米;(3)0.1×230=0.1×1073741824=107374182.4(毫米)107374182.4毫米=107374.1824米.教师补充:107374.1824米>8848.86米(珠穆朗玛峰高度)(四)课堂小结今天我们学了哪些内容:1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题.(五)课前预习预习下节课(1.5.1)43页到44页的相关内容。
湘教版七年级数学上册的教学计划(通用12篇)湘教版七年级数学上册的教学计划篇1一、基本情况分析七年级两个班学生的总体情况如下:1班学生:33人,其中男生18人,女生15人。
2班学生42人,其中女生20人,男生21人;通过小学的升学成绩来看,学生的数学成绩参差不齐,分数高的,有90分以上的分数低的,还不过30分,总体上看,学生的数学成绩较差,在学生的数学知识上看,小学学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩较差,但仍有部分学生对数学严重丧失信心,谈数学而色变,因此要给这部分学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活。
二、教材分析走进数学世界:这部分内容是以通俗易懂的语言、丰富有趣的数学问题、数学家的生平史料等内容,让学生在极其轻松的氛围中,与数学交朋友,学会做一些简单的数学问题,使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识,使学生对数学产生一定的兴趣,获得学好数学的自信心,产生继续学习的欲望。
这部分内容在小学数学和中学数学的联系中起到承上启下的作用,这为学生以后初中数学各部分的内容作了一个有益的铺垫。
有理数:这部分的主要内容是有理数的概念及其加减法、乘除法、和乘方运算,并配合有理数的运算学习有效数字和近似数的基本知识,以及使用计算器作简单的有理数运算。
七年级数学上册:
1.6 有理数的乘方
【知识与技能】
使学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算.
【过程与方法】
领会重要的类比思想、归纳思想,逐步形成数感、符号感.
【情感态度】
认识数学与生活是密切联系的,感受数学的严谨性,让学生对数学充满好奇心,形成主动学习态度,培养科学探索精神.鼓励猜想,倡导参与,学会与人合作,学会欣赏数学和感悟数学.
【教学重点】
理解有理数乘方的意义和表示,会进行乘方运算.
【教学难点】
1.准确进行有理数的乘方运算,特别是负数的乘方运算.
2.(-a)n 与-a n 的区别.
一、情景导入,初步认知
如果我们把一张足够大且厚度为0.1毫米的纸,连续对折30次.请大家猜想一下:它的厚度能超过珠穆朗玛峰吗?
【教学说明】由生动、有趣的问题开始,激发学生学习兴趣,激起学生的好奇心,营造和谐主动探索的氛围.
二、思考探究,获取新知
1.在小学学过2×2×2可以简记作23,那么23,3
2各表示什么意义? 2.(-2)×(-2)×(-2)×(-2)×(-2)可以简记作什么?可以简写成什么形式?
【归纳结论】一般地,a 是有理数,n 是正整数,则把
简计为a n
,我们把a n 读作a 的n 次方,也读作a 的n 次幂.
求n 个相同因数的乘积的运算叫做乘方.在an 中,a 叫做底数,n 叫做指数.即:
特别的,a2通常读作a的平方,a3通常读作a的立方.
【教学说明】帮助他们在自主探索和合作交流的过程中获得广泛的数学活动经验,真正理解和掌握基本的数学知识、数学思想和方法.
3.议一议:(-2)4与-24的含义相同吗?它们的结果相同吗?(-2)3与-23的含义与结果也相同吗?
【教学说明】让学生通过比较加深理解,掌握乘方的意义.
4.计算(1)102,103,104
(2)(-10)2,(-10)3,(-10)4
5.根据上面的计算说一说:正数的任何正整数次幂都是什么数?负数的奇数次幂是什么数?负数的偶数次幂是什么数?0的任何正整数次幂是什么数?
【归纳结论】正数的任何正整数次幂都是正数;负数的奇数次幂是负数;负数的偶数次幂是正数;0的任何正整数次幂都是0.
6.回顾有理数的乘方运算,算一算:
102,103,104 (1010)
请学生讨论回答:
(1)1021表示什么?
(2)指数与运算结果中的0的个数有什么关系?
(3)与运算结果的数位有什么关系?
【归纳结论】10的n次幂就是1后面有n个0.
三、运用新知,深化理解
1.教材P42例1、例2
2.下列说法正确的是( D )
A.一个数的平方一定大于这个数
B.一个数的平方一定大于这个数的相反数
C.一个数的平方只能是正数
D.一个数的平方不能是负数
3.蟑螂的生命力很旺盛,它繁衍后代的方法为下一代的数目永远是上一代数目的5倍也就是说,如果蟑螂始祖(第一代)有5只,则下一代(第二代)就有25只,依次类推,推算蟑螂第10代有( C )
A.58
B.59
C.510
D.511
4.(-3)·(-3)·(-3)用幂的形式可表示为 .
答案:(-3)3
5.如果(x-1)2+|b+1|=0,那么x
2003+b 2004= . 解:因为(x-1)2≥0,|b+1|≥0,(x-1)2+|b+1|=0,
所以(x-1)2=0,
|b+1|=0,
所以x=1,b=-1,
所以x 2003+x 2004=1+1=2.
7.请你把32,(-2)2,0,|-
21|,-10
1,(-1)10这六个数按从小到大的顺序排列,并用“<”连接.
答案:略
【教学说明】进一步巩固学生新学的知识,使知识条理化.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
布置作业:教材“习题1.6”中第1、2、6题.
本节课我低估了学生的学习能力,总是担心学生达不到我预想的程度,因此,上课时我过多地限制了学生的活动,对学生的思维压制太多,没有真正地让学生去自主学习,以致于学生的主观能动性没有完全发挥出来.二是灌输式教学仍在作祟,且教学有急于求成之嫌.三是我的普通话水平有限,口头表达能力欠火候,说话不够紧凑,语言不够精炼准确,这些都直接影响到教学的效果.。