博弈论答案第二章
- 格式:pdf
- 大小:93.43 KB
- 文档页数:11
博弈论教程答案【篇一:《经济博弈论》课后答案、补充习题答案】 2345篇二:经济博弈论(谢织予)课后答案及补充习题答篇三:博弈论课后习题么是博弈?博弈论的主要研究内容是什么?2、设定一个博弈模型必须确定哪几个方面?3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、“囚徒的困境”的内在根源是什么?举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型?6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则0.35的概率你讲收益300万元(包括投资),而0.65的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择?(c)如果你是风险规避的,且期望得益的折扣系数为0.9,你的策略选择是什么?(d)如果你是风险偏好的,期望得益折算系数为1.2,你的选择又是什么?7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么?2、为什么说纳什均衡是博弈分析中最重要的概念?3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响?5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡?博弈的结果是什么?6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额s1和s2,,如果s1+s2≤10 000,则两博弈方的要求都得到满足,即分别得到s1和s2,但如果是s1+s2>10 000,则该笔钱就被没收。
6一个猎人要带着一只狼、一只羊、一捆草过河,但是人不在的时候,狼会吃羊、羊会吃草,猎人每次只能带一样东西过河。
试用状态空间图求出他们能顺利过河的方案。
解:用四元组(f,w,s,g)表示状态,其中f表示猎人,w表示狼,s表示羊,g表示草,其中每个元素都可以为0或1,表示在左案,1表示在右岸。
四元组可表示的状态共有16种,其中合法状态为10种:(0,0,0,0)(0,0,0,1)(0,0,1,0)(0,1,0,0)(0,1,0,1)(1,0,1,0)(1,0,1,1)(1,1,0,1)(1,1,1,0)(1,1,1,1)初始状态为(0,0,0,0)目标状态为(1,1,1,1)共有七种操作:从左岸到右岸三种,从右岸到左岸四种方案有两种:p2→ q0 → p3→ q2 → p2 → q0 → p2p2→ q0 → p1→ q2 → p3→ q0→ p28.琴键翻动(供参考)解:引入一个三元组(q0,q1,q2)来描述总状态,开状态为0,关状态为1,全部可能的状态为:Q0=(0,0,0) ; Q1=(0,0,1); Q2=(0,1,0)Q3=(0,1,1) ; Q4=(1,0,0); Q5=(1,0,1)Q6=(1,1,0) ; Q7=(1,1,1)。
翻动琴键的操作抽象为改变上述状态的算子,即F={a, b, c}a:把第一个琴键q0翻转一次b:把第二个琴键q1翻转一次c:把第三个琴键q2翻转一次问题的状态空间为<{Q5},{Q0 Q7}, {a, b, c}>问题的状态空间图如下页所示:从状态空间图,我们可以找到Q5到Q7为3的两条路径,而找不到Q5到Q0为3的路径,因此,初始状态“关、开、关”连按三次琴键后只会出现“关、关、关”的状态。
11.代价树如图2-43所示。
其中,F 、I 、 J 、L 是目标结点。
(1)不考虑代价,给出广度和深度优先搜索过程和解。
(2)考虑代价,分别给出分支界限法和瞎子爬山法搜索策略下的搜索过程和解。
指定习题和参考答案Chapter 2: 1, 21. (a) D. There is so much amount and kinds of yogurt that each shopper need not consider whatothers do.(b) G. A prom is likely to be small enough that any participant can have some conceivable influence on others. For example, these two should prevent from dressing the same. However, in a BIG CITY, this may not be a case.(c) D. If he is not restricted to any specific university.(d) G. There are so few competitors for this specific product.(e) G. He must consider the interaction between him and his running mate. Even more, he must consider the response of the constituency when he chooses the mate.2. (a) Z; R/NR; I; F; NC.(b) NZ; NR; A; F; C.(c) NZ;NR; I; F; CChapter 3: 1, 2, 6, 71. (a) D=3, T=6(b) D=4, T=9(c) D=5, T=82. (a) #S(A)=2, S(A)={N,S}; #S(B)=2, S(B)={t, b}(b) #S(A)=2*2*2=8, S(A)={NNN, NNS, NSN, NSS, SNN, SNS, SSN, SSS}(left, right-up,right-down)#S(B)=2, S(B)={t, b}; #S(C)=2, S(C)={u,d}(c) #S(A)=2*2*2=8, S(A)= {NNN, NNS, NSN, NSS, SNN, SNS, SSN, SSS}(left, middle,right)#S(B)=8, S(B)={nnn, nns, nsn, nss, snn, sns, ssn, sss}6. (a) At the final run, B must take dimes. At the run next to final, if A choose to pass, given Btake dime at the final run, he can only get the reward accumulating at a speed of 5 cents per turn, initially 0 cents. If he takes dimes, he gets the dimes accumulating at a speed of 20 cents per turn, initially 10 cents. He surely takes dimes. Given this, B must take dimes at the run second next to final (B’s payoffs are the same as in our initial game) . Then A has the same reasoning as at the next to final run. And so on. So the rollback equilibrium strategy is always taking dime, for both players.(b) Using rollback method, let’s consider from the second round.No matter what payoffs both have got in the first round, they have sunk and cannot affect both players’ decisions in the second round. So two players play the second round as if it is a single-round centipede. So each plays is always choosing to take dimes, resulting payoffs of10 to A and 0 to B.Keeping this in both players’ mind, the first round is played almost as a single-roundcentipede, except that A always gets a reward of 10, whether she passes the dime or take it.But the fact that you always get something will neither affect your decision. So finally the first round game is exactly as a single-round centipede.Use rollback to this reduced single-round centipede. Notice the game is essential the same as before in the first 6 runs when the total amount is not accumulated to 50 when it’s player A’ s turn to play. If we can decide that the game after the 6th run will have an equilibrium of both players always taking dimes, we can be sure that B will get at most 20 when the 7th run comes and A (at most) takes 50.Now consider this ‘small’ equilibrium with only the last 4 runs. B will take dimes at in the final run (with a payoff of 90, otherwise 0). In any round before for A to play, taking dimes will leave her at least 50, but passing it will leave her at most 100-90=10 if B takes dimes then. In any round before for B, taking dime will leave him at least 60, but passing it will leave her at most 100-50=50 if A takes dimes then. Given the final run’s action of B (taking dimes), we can derive that both will always take dime in any round before, but after 6th run.Now let’s go back to our 6th run. B will take dimes at the 6th run (with a payoff of 60, otherwise 20). Given B’s choice, the game before the 6th run goes like the original one.The equilibrium is that both players always take dimes.(c) All the logic of (b) applies here until we begin to consider the last 5 runs (not 4 runs at thistime) of the first round game. Use rollback.B takes dimes in the final run, but get only 40 and leave 50 (as we restricts) to A. In the9th(second to the last) run, A can choose either to pass or take dimes(getting 50 both). The game essential the same when it ends in 9th run or 10th run.However, the 8th run is crucial. B can choose either to pass or to take dimes (getting 40 both). If B chooses to take dimes, A will definitely chooses to take dimes in the 7th run, and so on. The cooperation totally breaks and results in taking dimes always (our old equilibrium outcome).In any round before, but after 5th run, if both expect complete cooperation throughout the future, then they can either choose to pass or take. Any single deviation from cooperation (taking dimes) will result in total breakdown. So the 6-8th runs are all crucial points, given cooperation afterwards.Consider both pass dimes. Given this, at the 5th run, A chooses to pass is at least as good as to take. Taking them leads to breakdown as well. Suppose she passes it. B will also be indifferent with passing or taking dimes. So the 4-5th runs are also crucial points.However the 3rd run and the earlier are not crucial. If cooperation always happens afterward, passing dimes are always strictly better than taking dimes. If breakdown has already happen afterwards, taking dimes are definitely better choices.Summary: this game has multiple equilibria. Always passing dimes is one of them. Any deviations in one of 4-8th runs, given cooperation afterwards, will lead to breakdown from the very beginning. ( The number of equilbria is (1+5)*2=12, taking into account in the 9th run, both passing or taking dimes are indifferent for A.)7. (a) Amy; Beth.The player who reaches exactly 89 first will win; thus the player who reaches 78 first will win;thus 67,56, 45, 34, 23, 12, 1. Obviously Amy will reach 1 first.The player who reaches exactly 99 first will win. Then 88, 77, 66, 55, 44, 33, 22, 11.Obviously Beth will reach 11 first.(b) For Amy: 1 in the first run, then 11 no matter what Beth chooses, and 22, and so on. ForBeth, she can choose any amount between 1 and10.For Amy: any amount between 1 and 10. For Beth, 11 in his first run, 22 in his second run, and so on.Chapter 4: 2(d), 3(d), 5, 6, 9, 122. (d) Up is dominated by Straight (for Row). Then Left and Middle are both dominated by Right(for Column). Given Column plays Right, Row chooses Straight. The only NE is (Straight, Right).3. (d) (North, East) (unique NE). No dominant or dominated for both. Best-response analysis.5. Dominance solvable. (Up, Left). (Level, Center) has the same payoffs but not NE. There arealso other strategy configurations having strictly higher payoffs but not NEs.6. (1)JapaneseNorthern Southern AmericanNorthern 2 2Southern 1 3 (2) “Southern” is weakly dominated by “Northern” for Japanese. (North, North) is the only NE.(Check if “Southern” for Japanese can be part of any NE before you eliminate it.)9. (a) 3 NEs: (1, 1), (2, 2), (3, 3). The first is less likely to be focal point. But the other two areequally likely to be.(b) 12.5; Yes; Mixed strategy (just like flipping coins) can be used.12. (a) Two NEs: (Brunette, Blonde), and (Blonde, Brunette), yielding payoffs (5, 10) and (10, 5)respectively.Player 2Blonde BrunettePlayer 15Blonde 0,0 10,Brunette 5, 10 5, 5(b)Player 3Blonde BrunettePlayer 2 Player 2Blonde Brunette Blonde Brunette Player 1Blonde 0, 0, 0 0, 5, 0 0, 0, 5 10, 5, 5Brunette 5, 0, 0 5, 5, 10 5, 10, 5 5, 5, 53 NEs: (Blonde, Brunette, Brunette), (Brunette, Blonde, Brunette), and (Brunette, Brunette, Blonde), with payoffs 10 for who wins the Blonde, 5 for who wins Brunette.(c) The only possible NEs are those with only one pursues and wins the only Blonde and all others pursues and wins somehow excessive Brunettes.Or, follow the assumption given in text. Given k>=1, for any player, his payoffs of pursuing the Blonde is 0 and definitely worse than pursuing the Brunette with payoff 5. However, if k=0, you’d better pursue the Blonde.Consider this for a while, you will get the NE solutions.Thus All players choose Brunette cannot be a NE.。
博弈论与信息经济学答案第⼀章5.n 个企业,其中的⼀个⽅程:π1=q 1(a -(q 1+q 2+q 3……q n )-c ),其他的类似就可以了,然后求导数,结果为每个值都相等,q 1= q 2=……q n=(a-c)/(n+1)。
或者先求出2个企业的然后3个企业的推⼀下就好了。
6.假定消费者从价格低的⼚商购买产品,如果两企业价格相同,就平分市场,如果企业i 的价格⾼于另⼀企业,则企业i 的需求量为0,反之,其它企业的需求量为0。
因此,企业i 的需求函数由下式给出:i ii i i i i i p pi p p p p 0)/2Q(p )Q(p q --->==从上述需求函数的可以看出,企业i 绝不会将其价格定得⾼于其它企业;由于对称性,其它企业也不会将价格定的⾼于企业i ,因此,博弈的均衡结果只可能是每家企业的价格都相同,即p i =p j 。
但是如果p i =p j >c 那么每家企业的利润02i ij i p cq ππ-==>,因此,企业i 只要将其价格略微低于其它企业就将获得整个市场的需求,⽽且利润也会上升⾄()()22i i i i p c p cQ p Q p εε---->,()0ε→。
同样,其它企业也会采取相同的策略,如果此下去,直到每家⼚商都不会选择降价策略,此时的均衡结果只可能是p i =p j =c 。
此时,企业i 的需求函数为2ia cq -=。
在静态的情况下,没有⼀个企业愿意冒险将定价⾼于⾃⼰的单位成本C ,最终P=C ,利润为0。
因为每个参与⼈都能预测到万⼀⾃⼰的定价⾼于C ,其他⼈定价为C 那么⾃⼰的利益就是负的(考虑到⽣产的成本⽆法回收)。
就算两个企业之间有交流也是不可信的,最终将趋于P=C 。
现实情况下⼀般寡头不会进⼊价格竞争,⼀定会取得⼀个P 1=P 2=P 均衡。
此时利润不为零,双⽅将不在进⾏价格竞争。
7.设企业的成本相同为C ,企业1的价格为P 1,企业2的价格为P 2。
博弈论练习题(四)一、什么是子博弈精炼纳什均衡?答:将纳什均衡中包含的不可置信的威胁策略剔除出去。
它要求参与者的决策在任何时点上都是最优的。
由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。
只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。
或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
二、参与人的理性问题对动态博弈分析的影响是否比静态博弈的影响更大?为什么?答:正确,博弈论要求个体具有始终追求自身利益最大化的理性意识和理性能力的“自我”个体理性,这是静态博弈的范畴。
除此之外,还要求相关的参与者具有层次较高的“交互理性”,要求不同个体之间在理性和行为方面具有一种“默契”。
即,人们的自身利益的最大化不仅取决于自己的选择,还取决于与之相关的其他人的选择与行为,那么为了实现自己的最大利益,个体的理性决策就必须考虑他人的理性选择与行为。
作为博弈论的基础,交互理性是其基本的理性要求。
博弈论还要求有关博弈的结构、各个博弈参与者的得益函数以与各个博弈参与者的理性等“知识”是所有博弈参与者之间的“共同知识”。
也就是,每个博弈参与者不仅要首先明确自己和其他参与者所有可选的策略,还需知晓各种情况下自己最终的收益或其概率分布,并且每个博弈参与者都知道各个参与者掌握这些信息;更为重要的是,每个博弈参与者都知道所有参与者都是理性的,都知道其他博弈参与者知道所有参与者都是理性的,都知道其他博弈参与者知道其他博弈参与者知道所有博弈参与者都是理性的------。
理性的共同知识假设是非合作博弈理论的一个非常重要和关键的假设,是实现交互理性和理性主义的纳什均衡的基本前提,这些,都是动态博弈的范畴。
因此说,参与者理性问题对动态博弈的分析影响更大。
三、纳什均衡和精炼纳什均衡存在哪些问题?答:纳什均衡存在的问题:(1)不是所有博弈都存在纳什均衡如纯策略就不存在混合策略则一定会存在纳什均衡,它是通过概率来计算纳什均衡,在这种均衡下,给定其他参与人的策略选择概率,每个参与人都可以为自己确定选择每一种策略的最优概率。
《博弈论》习题参考答案(第2次作业)一、选择题1.B2.C3.A4.A5.B6.ABCD7.C 8.B 9.C二、判断正误并说明理由1.F 上策均衡是比纳什均衡更严格的均衡概论2.T 上策均衡是比纳什均衡更严格的均衡概论3.T 博弈类型按局中人数多少分为单人博弈、双人博弈和多人博弈4.F 博弈双方偏好存在差异的条件下,一个博弈模型中可能存在2个纳什均衡,如性别战5.T 零和博弈指参与博弈各方在严格竞争下,一方收益等于另一方损失,博弈各方收益与损失之和恒为零,所以双方不存在合作可能性6.T 上策均衡是通过严格下策消去法(重复剔除下策)所得到的占优策略,只能有一个纳什均衡7.F 纳什均衡是上策的集合,指在给定的别人策略情况下,博弈方总是选择利益相对较大的策略,并不保证结果是最好的。
8.F 局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标9.T 纳什均衡是上策的集合,指在给定的别人策略情况下,没有人会改变自己的策略而减低自己的收益10.F 局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标11.F 局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标12.T 虽然斯塔格伯格模型各方利润总和小于古诺模型,但是领导者的利润比古诺模型时高三、计算与分析题1、 (1)画出A 、B 两企业的损益矩阵。
(2)求纯策略纳什均衡。
(做广告,做广告)2、画出两企业的损益矩阵求纳什均衡。
(1)画出A 、B 两企业的损益矩阵(2)求纳什均衡。
两个:(原价,原价),(涨价,涨价) 3、假定某博弈的报酬矩阵如下:甲乙 左 右 上 下(1)如果(上,左)是上策均衡,那么,a>?, b>?, g<?, f>? 答:a>e, b>d, f>h, g<c(2)如果(上,左)是纳什均衡,上述哪几个不等式必须满足? 答:a>e, b>d 4、答:(1)将这一市场用囚徒困境的博弈加以表示。