导数的应用2
- 格式:ppt
- 大小:1.56 MB
- 文档页数:42
导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。
这
就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。
2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。
二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。
2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。
三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。
2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。
初中数学知识归纳导数的计算和应用初中数学知识归纳:导数的计算和应用导数是微积分中的重要概念,可以衡量函数在某一点的变化率。
它在数学和实际问题中有广泛应用。
本文将对初中阶段数学中导数的计算和应用进行归纳总结。
一、导数的计算方法导数的计算方法主要包括基本导数公式和导数的四则运算。
1. 基本导数公式在初中阶段,我们主要掌握以下基本导数公式:- 常数函数的导数为0。
- 指数函数 y = a^x (其中a>0且a≠1) 的导数为 y' = a^x * ln(a)。
- 对数函数 y = log_a(x) 的导数为 y' = 1 / (x * ln(a))。
- 幂函数 y = x^n (其中n为正整数或分数) 的导数为 y' = n * x^(n-1)。
2. 导数的四则运算导数的四则运算包括加减乘除运算。
- 若函数 y = f(x) 和 g(x) 都可导,则 y = f(x) ± g(x) 的导数为 y' = f'(x) ± g'(x)。
- 若函数 y = f(x) 和 g(x) 都可导,则 y = f(x) * g(x) 的导数为 y' = f'(x) * g(x) + f(x) * g'(x)。
- 若函数 y = f(x) 可导,g(x) 不为0且可导,则 y = f(x) / g(x) 的导数为 y' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2。
二、导数的应用导数在实际生活和学习中有广泛的应用,下面我们分别就函数的极值、函数的图像和函数的平均变化率三个方面进行介绍。
1. 函数的极值对于函数的极值问题,我们可以通过导数来进行分析。
若函数 f(x)在某一点 x0 处可导且导数为0,那么该点可能是函数的极值点。
我们可以通过导数的正负来判断极值的类型:若导数 f'(x) 在 x0 的左侧为正,在 x0 的右侧为负,那么 x0 是一个极大值点;反之,如果导数 f'(x) 在x0 的左侧为负,在 x0 的右侧为正,则 x0 是一个极小值点。
第2课时《导数在函数中的应用》说课稿杭集中学杭圣平导数这一块内容的教学分为五个课时,第一课时导数的概念与几何意义;第二课时导数的基本运算;第三课时导数在研究函数中的运用(1);第四课时导数在研究函数中的运用(2);第五课时导数在实际问题中的应用。
一、说教材导数是高中数学新增内容,它在解决数学问题中起到工具的作用,其地位十分重要。
在近年来年的高考题都涉及这个知识点,主要用来解决与函数相关的一类问题,难度较大,涉及面广,如在研究函数单调性,讨论函数图象的变化趋势、求极值和最值、不等式恒成立等。
运用导数解决这类问题能化繁为简,起事半功倍的作用。
二、说教学目标通过本节课的学习让学生进一步建立利用导数解决与函数有关问题的意识。
并要掌握以下三个方面:第一:导数与函数单调性的关系,会求函数单调区间及参数取值范围。
第二:导数与函数的极值、极值与最值的关系,会求函数的极值,最值及参数范围。
第三:综合考查,将导数内容和传统内容,函数的单调性、不等式的恒成立,解析几何中距离相结合,提高学生分析问题解决问题的能力。
三、说教学方法多媒体教学与诱导法,在教学过程中与学生进行互动式教学四、说重点与难点在分析例题时,引导学生抓住重点,突破难点,提高分析问题和解决问题的能力,并要形成一定的经验,理解并掌握针对此类题目的常规解题思路。
本节课设计了三道例题,重点都放在导数在解决函数有关问题的应用上。
例1主要是从导数与函数单调性关系出发,找出不等式恒成立,通过分离变量或数形结合,解决有关的参数的范围。
例2则是导数在解析几何中的应用,在求距离的最小值时,从数的角度出发重点应放在函数构造及求函数值域上;若从形的角度出发重点应放在距离的转化上与切线方程求法上。
例3则是应用导数求含参数函数的极值与参数范围,重点在于熟练求极值方法。
解决这三个重点就要对导数的基础知识透彻理解。
例1和例2的难点都是问题的转化上。
如例1中将f(x)在区间I上单调递减转化为不等式恒成立;例2中求距离最小值时构造函数或转化为两平行线之间的距离这一步是最关键的,例3对题意的把握,对参数范围讨论及极大极小值的判断是关键,需要学生具备对导数与函数单调性、极值、最值关系的理解能力和分析问题简化问题的能力。
导数的七种应用
导数是一个重要的数学概念,它表达了函数变化的方式。
由于它可以描述函数之间的关系,所以它在几乎所有的数学和科学领域中都有应用。
导数的七种应用是:
一、用于估算
导数可以用来估算函数的极值,从而使我们能够得出函数的极值点。
此外,还可以用导数来估算函数在任意点处的变化率。
二、用于求极值
使用导数,可以求出函数在某一点处的极值。
这使得可以确定某函数的最大值和最小值,以及求解它们所在的位置。
三、用于求解微分方程
导数也可以用来求解微分方程。
因为微分方程的形式是表示函数变化率的方程,所以它可以使用导数来求解。
四、用于图像的拟合
导数可以用来拟合任意函数的图像。
只需要知道函数的形式,就可以用导数来拟合图像。
五、用于求局部极大值或极小值
导数可以用来求局部极大值或极小值。
这是因为可以通过函数的导数来确定其极大值和极小值的位置。
六、用于解决线性递增/递减问题
通过导数,可以解决线性递增/递减问题。
这是由于递增/递减函数的导数表示其变化率,所以可以根据导数求解此类问题。
七、用于求微分
导数也可以用来求微分。
微分是求函数图像在某一点处的斜率,因此可以使用导数来求微分。
从上面我们可以看出,导数有着众多的应用,涵盖了数学和科学领域的众多研究领域。
运用它们,可以解决各种复杂问题,为科学和数学探索做出重要贡献。
导数在实际生活中的运用【摘要】导数在实际生活中的应用广泛而深远。
在物体运动的描述中,导数可以帮助我们准确地预测物体的速度和加速度。
在经济学中,导数被用来分析市场趋势和制定最优的经济政策。
医学领域中,导数可以帮助医生更好地理解生命体征数据,提高诊断和治疗的准确性。
工程领域中,导数在设计和优化各种系统、结构和器件中扮演着重要角色。
环境保护方面,导数可以帮助我们预测污染物在环境中的传播和影响。
导数在各个领域中的普遍性表明了其对现代社会的重要性。
通过对导数的深入研究和应用,我们能够更好地理解世界的运行规律,促进科技进步和社会发展。
【关键词】导数、实际生活、物体运动、经济学、医学领域、工程领域、环境保护、普遍性、重要性1. 引言1.1 导数在实际生活中的运用导数在实际生活中的运用广泛而深远。
在日常生活中,我们可能并不经常意识到导数的存在,但实际上,导数在我们生活的方方面面都有着重要的应用。
导数可以帮助我们描述物体的运动,预测经济的发展趋势,提高医学诊断的准确性,优化工程设计的效率,以及保护环境资源的可持续性。
物体运动的描述是导数在实际生活中的最常见应用之一。
通过导数,我们可以精确地描述物体在空间中的位置、速度和加速度变化,从而帮助我们进行准确的运动分析和预测。
在交通规划中,导数可以帮助我们优化车辆的行驶路线,缓解交通拥堵问题;在体育比赛中,导数可以帮助我们分析选手的表现,并优化训练计划。
除了物体运动,导数在经济学、医学、工程和环保领域中也有着重要的应用。
在经济学中,导数可以帮助我们分析市场的供需关系,预测商品价格的波动趋势,优化投资组合的收益率。
在医学领域,导数可以帮助医生精确地分析患者的病情,提高诊断和治疗的效率。
在工程领域,导数可以帮助工程师优化产品设计,提高生产效率和质量。
在环境保护领域,导数可以帮助我们优化资源利用,减少能源消耗和环境污染,实现可持续发展。
导数在各个领域中都有着重要的应用,对现代社会的发展起着至关重要的作用。
导数在生活中的应用3则1.导数在股票投资中的应用:投资者通常会关注股票价格的变化趋势,导数可以用来衡量股票价格的变化速率。
如果股票价格的导数为正,表示股票价格在上升;如果股票价格的导数为负,表示股票价格在下降。
投资者可以根据股票价格的导数来作出买卖决策。
2.导数在医学中的应用:医学中,导数可以用来研究身体对药物的反应。
如果身体对药物的反应速率(即血液中药物浓度的变化速率)为正,表示药物的浓度在增加;如果身体对药物的反应速率为负,表示药物的浓度在减少。
医生可以根据身体对药物的反应速率来调整药物的用量。
3.导数在交通工程中的应用:交通工程中,导1.导数在建筑工程中的应用:建筑工程中,导数可以用来计算建筑物的屈服点。
屈服点是指建筑物在外力作用下,开始变形的点。
如果建筑物的弹性模量的导数为正,表示建筑物在受到外力时会变得更加坚固;如果建筑物的弹性模量的导数为负,表示建筑物在受到外力时会变得更加脆弱。
建筑工程师可以根据建筑物的弹性模量的导数来设计建筑物的结构。
2.导数在机械工程中的应用:机械工程中,导数可以用来计算机械设备的运动学参数。
如果机械设备的速度的导数为正,表示机械设备在变速;如果机械设备的速度的导1.导数在经济学中的应用:经济学中,导数可以用来研究经济变量之间的关系。
如果两个经济变量的函数图像的导数之积为正,表示这两个变量呈正相关;如果两个经济变量的函数图像的导数之积为负,表示这两个变量呈负相关。
经济学家可以根据这些信息来预测经济的发展趋势。
2.导数在生物学中的应用:生物学中,导数可以用来研究生物体内的生化反应速率。
如果生化反应速率的导数为正,表示反应速率在增加;如果生化反应速率的导数为负,表示反应速率在减少。
生物学家可以根据生化反应速率的导数来研究生物体的生理过程。
第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f(x)的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R. (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f(x)=x 0的定义域为{x|x≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域:1.y =kx +b(k≠0)的值域是R .2.y =ax 2+bx +c(a≠0)的值域是:当a>0时,值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a<0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤4ac -b 24a . 3.y =kx (k≠0)的值域是{y|y≠0}.4.y =a x(a>0且a≠1)的值域是(0,+∞). 5.y =log a x(a>0且a≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f(x)与f(x +a)(a 为常数a≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x>1.( × ) (3)函数y =f(x)定义域为[-1,2],则y =f(x)+f(-x)定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a)的值域为R ,则a 的取值范围为⎝ ⎛⎦⎥⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × ) [解法二](判别式法):设x 2+2=t(t≥2),则y =t +1t ,即t 2-ty +1=0,∵t∈R,∴Δ=y 2-4≥0,∴y≥2或y ≤-2(舍去).( × )[解法三](配方法):令x 2+2=t(t≥2),则y =t +1t =⎝ ⎛⎭⎪⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t≥2时是增函数,所以t =2时,y min =322,故y∈⎣⎢⎡⎭⎪⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a)值域为R 应满足Δ≥0,即1-4a≥0,∴a≤14.题组二 走进教材2.(必修1P 17例1改编)函数f(x)=2x-1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x-1≥0x -2≠0,解得x≥0且x≠2,故选C .3.(必修1P 32T5改编)函数f(x)的图象如图,则其最大值、最小值分别为( B )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f(0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32,f(0) D .f(0),f(3)4.(必修1P 39BT1改编)已知函数f(x)=x +9x ,x∈[2,4]的值域为⎣⎢⎡⎦⎥⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎢⎡⎦⎥⎤6,132.题组三 走向高考5.(2020·北京,11,5分)函数f(x)=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f(x)有意义,则⎩⎪⎨⎪⎧x +1≠0,x>0,故x>0,因此函数f(x)的定义域为(0,+∞).6.(2016·北京,5分)函数f(x)=xx -1(x≥2)的最大值为2.[解析] 解法一:(分离常数法)f(x)=x x -1=x -1+1x -1=1+1x -1,∴x≥2,∴x-1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f(x)=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy-y =x ,∴x=y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-yy -1≥0,解得1<y≤2,故函数f(x)的最大值为2.解法三:(导数法)∵f(x)=x x -1,∴f′(x)=x -1-x (x -1)2=-1(x -1)2<0,∴函数f(x)在[2,+∞)上单调递减,故当x =2时,函数f(x)=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x>0,x +1>0,x≠0,解得-1<x<0或0<x<1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x<0或0<x≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1[解析] 由函数f(x)的定义域为(-1,0),则使函数f(2x +1)有意义,需满足-1<2x +1<0,解得-1<x<-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12. [引申1]若将本例中f(x)与f(2x +1)互换,结果如何? [解析] f(2x +1)的定义域为(-1,0),即-1<x<0, ∴-1<2x +1<1,∴f(x)的定义域为(-1,1).[引申2]若将本例中f(x)改为f(2x -1)定义域改为[0,1],求y =f(2x +1)的定义域,又该怎么办? [解析] ∵y=f(2x -1)定义域为[0,1].∴-1≤2x-1≤1,要使y =f(2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x≤0, 因此y =f(2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f(x)的定义域为[a ,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 求出; ②若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域. 〔变式训练1〕(1)(角度1)函数f(x)=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f(x)=ln(-2x +a)的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)已知函数y =f(x 2-1)的定义域为[-3,3],则函数y =f(x)的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x≤2,且x≠0.故选B .(2)因为-2x +a>0,所以x<a 2,所以a2=1,得a =2.故选D .(3)因为y =f(x 2-1)的定义域为[-3,3],所以x∈[-3,3],x 2-1∈[-1,2],所以y =f(x)的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x|1+|x|;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;(6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x|1+|x|=-1+21+|x|, ∵|x|≥0,∴|x|+1≥1,∴0<2|x|+1≤2.∴-1<-1+21+|x|≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x|1+|x|,得|x|=1-y 1+y.∵|x|≥0,∴1-y 1+y ≥0,∴-1<y≤1,即函数值域(-1,1].(2)解法一:配方法:y =-2⎝ ⎛⎭⎪⎫x -142+258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t≤258,又∵y=t 有意义,∴0≤t≤258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x≠0),得y -1=x +1x.∵⎪⎪⎪⎪⎪⎪x +1x =|x|+⎪⎪⎪⎪⎪⎪1x ≥2|x|·⎪⎪⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞)解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y)x +1=0.∵方程有实根,∴Δ=(1-y)2-4≥0.即(y -1)2≥4,∴y-1≤-2或y -1≥2.得y≤-1或y≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y′=1-1x 2=(x +1)(x -1)x 2<0, 得-1<x<0或0<x<1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y≤-1. ∴y ≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t(t≥0),得x =1-t22,∴y =1-t 22-t =-12(t +1)2+1≤12(t≥0),∴y ∈⎝ ⎛⎦⎥⎤-∞,12.即函数的值域为⎝ ⎛⎦⎥⎤-∞,12.解法二:单调性法∵1-2x≥0,∴x≤12,∴定义域为⎝ ⎛⎦⎥⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝ ⎛⎭⎪⎫-∞,12上均单调递增,∴y≤12-1-2×12=12,∴y∈⎝⎛⎦⎥⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎢⎡⎦⎥⎤-π2,π2,y =sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4, ∵θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴y∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x<-1),3(-1≤x≤2),2x -1(x>2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a≠0,f(x)值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x)+bf(x)+c(a≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b±cx +d (c≠0)的函数;如例3(4);形如y =ax +b±c 2-x 2(c≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝ ⎛⎭⎪⎫x>12.[解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y 1+y≥0.所以-1<y≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t≥0), 所以y≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x>12,所以x -12>0,所以x -12+12x -12≥2⎝ ⎛⎭⎪⎫x -12·12⎝ ⎛⎭⎪⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号.所以y≥2+12,即原函数的值域为⎣⎢⎡⎭⎪⎫2+12,+∞. 导数法:y′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f(x)=lg [(a 2-1)x 2+(a +1)x +1].(1)若f(x)的定义域为R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.[分析] (1)由f(x)的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立;(2)由f(x)的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a>53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=1>0,满足题意.∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎢⎡⎦⎥⎤32,4C .⎣⎢⎡⎦⎥⎤32,3D .⎣⎢⎡⎭⎪⎫32,+∞ [解析] (1)①当m =0时,y =8,其定义域为R. ②当m≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m>0,Δ=(-6m )2-4m (m +8)≤0, 解得0<m≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,∴32≤m≤3. 另:由y =x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴32≤m ≤3.。
第2讲导数的应用考纲展示命题探究1函数的单调性与导数的关系2用充分必要条件来诠释导数与函数单调性的关系(1)f′(x)>0(或f′(x)<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或f′(x)≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件(f′(x)=0不恒成立).注意点应用导数解决函数单调性问题的原则方法(1)求函数f(x)的单调区间,也是求不等式f′(x)>0(或f′(x)<0)的解集,但单调区间不能脱离函数定义域而单独存在,求单调区间要坚持“定义域优先”的原则.(2)由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或f′(x)≤0)在该区间恒成立,而不是f′(x)>0(或f′(x)<0)恒成立,“=”不能少.必要时还需对“=”进行检验.1.思维辨析(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)f(x)在(a,b)上单调递增与(a,b)是f(x)的单调递增区间是相同的说法.()答案(1)×(2)√(3)×2.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0) B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)答案 D解析y′=-2x e x+(3-x2)e x=e x(-x2-2x+3),由y′>0⇒x2+2x-3<0⇒-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).故选D.3.函数f (x )=e x -2x 的单调递增区间是________.答案 (ln 2,+∞)解析 f ′(x )=e x -2,令f ′(x )=0得x =ln 2.当x ∈(ln 2,+∞)时,f ′(x )>0,∴f (x )=e x -2x 的单调递增区间为(ln 2,+∞).[考法综述] 单调性是导数几种应用中最基本也是最重要的内容,因为求极值和最值都离不开单调性.利用导数讨论函数单调性或求函数的单调区间是导数的重要应用,也是高考的热点,经常在解答题的分支问题中出现,难度一般.命题法 判断函数的单调性典例 已知函数f (x )=ln x -mx +m ,m ∈R .(1)已知函数f (x )在点(1,f (1))处与x 轴相切,求实数m 的值;(2)求函数f (x )的单调区间;(3)在(1)的结论下,对于任意的0<a <b ,证明:f (b )-f (a )b -a<1a -1. [解] 由f (x )=ln x -mx +m ,得f ′(x )=1x -m (x >0).(1)依题意得f ′(1)=1-m =0,即m =1.(2)当m ≤0时,f ′(x )=1x -m >0,函数f (x )在(0,+∞)上单调递增;当m >0时,f ′(x )=-m ⎝⎛⎭⎪⎫x -1m x ,由f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫0,1m ,由f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫1m ,+∞, 即函数f (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减. (3)证明:由(1)知m =1,得f (x )=ln x -x +1,对于任意的0<a <b ,f (b )-f (a )b -a<1a -1可化为(ln b -b )-(ln a -a )b -a<1a -1,因为0<a <b ,所以有b -a >0,故不等式可化为(ln b -b )-(ln a -a )<⎝ ⎛⎭⎪⎫1a -1(b -a ),即ln b a <b a -1,令t =b a ,得ln t -t +1<0(t >1),令f (t )=ln t -t +1.由(2)知,函数f (x )在(1,+∞)上单调递减,且f (1)=0,即f (t )<f (1),于是上式成立,故对于任意的0<a <b ,f (b )-f (a )b -a <1a-1成立. 【解题法】 单调区间的求法及由单调性求参数取值范围的方法(1)利用导数求函数的单调区间的两个方法①方法一:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x );c .解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;d .解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. ②方法二:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x ),令f ′(x )=0,解此方程,求出在定义域内的一切实根;c .把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义域分成若干个小区间;d .确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.(2)由函数的单调性求参数的取值范围的方法①可导函数在某一区间上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)(f ′(x )在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围.②可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题.③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.1.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由题意可知存在唯一的整数x 0,使得e x 0(2x 0-1)<ax 0-a ,设g (x )=e x (2x -1),h (x )=ax -a ,由g ′(x )=e x (2x +1)可知g (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,故⎩⎪⎨⎪⎧ h (0)>g (0)h (-1)≤g (-1),即⎩⎨⎧ a <1-2a ≤-3e ,所以32e≤a <1,故选D.2.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A解析 令F (x )=f (x )x ,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x 在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A.3.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1k B .f ⎝ ⎛⎭⎪⎫1k >1k -1 C .f ⎝ ⎛⎭⎪⎫1k -1<1k -1 D .f ⎝ ⎛⎭⎪⎫1k -1>k k -1答案 C解析 构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数.∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0,∴g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>k k -1-1=1k -1, 所以选项C 错误,故选C.4.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)答案 C解析 (1)当a =0时,显然f (x )有两个零点,不符合题意.(2)当a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x 1=0,x 2=2a .当a >0时,2a >0,所以函数f (x )=ax 3-3x 2+1在(-∞,0)与⎝ ⎛⎭⎪⎫2a ,+∞上为增函数,在⎝⎛⎭⎪⎫0,2a 上为减函数,因为f (x )存在唯一零点x 0,且x 0>0,则f (0)<0,即1<0,不成立.当a <0时,2a <0,所以函数f (x )=ax 3-3x 2+1在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上为减函数,在⎝ ⎛⎭⎪⎫2a ,0上为增函数,因为f (x )存在唯一零点x 0,且x 0>0,则f ⎝ ⎛⎭⎪⎫2a >0,即a ·8a 3-3·4a 2+1>0,解得a >2或a <-2,又因为a <0,故a 的取值范围为(-∞,-2).选C.5.已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.解 (1)由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x-a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x , 所以g ′(x )=2-2x +2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明:由f ′(x )=2(x -a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x =0,解得a =x -1-ln x 1+x -1. 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1. 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0. 故存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 01+x -10,u (x )=x -1-ln x (x ≥1). 由u ′(x )=1-1x ≥0知,函数u (x )在区间(1,+∞)上单调递增.所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e -1<1. 即a 0∈(0,1).当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0.由(1)知,f ′(x )在区间(1,+∞)上单调递增,故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0.所以,当x ∈(1,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.6.设函数f (x )=3x 2+ax e x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e , 从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x-e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +a e x, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366, x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92, 故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞. 7.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根:x 1=-1+1-a a ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0, 故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数;若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞). 1 判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.2 求可导函数f (x )的极值的步骤(1)求导函数f ′(x );(2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.3 函数的最值在闭区间[a ,b ]上的连续函数y =f (x ),在[a ,b ]上必有最大值与最小值.在区间(a ,b )上的连续函数y =f (x ),若有唯一的极值点,则这个极值点就是最值点.注意点 极值点的含义及极值与最值的关系(1)“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).(2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.1.思维辨析(1)导数为零的点不一定是极值点.( )(2)三次函数在R 上必有极大值和极小值.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(6)函数f (x )=x sin x 有无数个极值点.( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)√2.函数y =x 4-4x +3在区间[-2,3]上的最小值为( )A .72B .36C .12D .0 答案 D解析 因为y ′=4x 3-4,令y ′=0即4x 3-4=0,解得x =1.当x <1时,y ′<0,当x >1时,y ′>0,所以函数的极小值为y |x =1=0,而在端点处的函数值y |x =-2=27,y |x =3=72,所以y min =0.3.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3 答案 A解析 ∵f ′(x )=3ax 2+b ,∴f ′(1)=3a +b =0.①又当x =1时有极值-2,∴a +b =-2.②联立①②解得⎩⎪⎨⎪⎧a =1,b =-3. [考法综述] 函数的极值与最值是高考热点内容,对极值的考查主要有2个命题角度:①判断极值的情况,②已知函数求极值.考查函数最值时必定涉及函数的单调性,还会涉及方程和不等式.题型有大题也有小题且有一定难度.另外已知函数的极值(最值)情况求参数的取值范围也是热点考查内容,涉及函数的单调性时,往往需要进行分类讨论,这类题综合性强,难度较大.命题法 求函数的极值与最值典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1). (1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.[解] (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表: x(-∞,0) 0 f ′(x )- 0 + 0 -f (x )极小值 极大值 点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增,则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.【解题法】 求函数极值和最值的方法(1)求函数的极值应先确定函数的定义域,再解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表结合导函数与0的大小(或函数的单调性)进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.(2)函数的最大值①若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.②若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.③函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.1.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f (x )的零点B .1是f (x )的极值点C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上答案 A解析 由A 知a -b +c =0;由B 知f ′(x )=2ax +b,2a +b =0;由C 知f ′(x )=2ax +b ,令f ′(x )=0可得x =-b 2a ,则f ⎝ ⎛⎭⎪⎫-b 2a =3,则4ac -b 24a =3;由D 知4a +2b +c =8.假设A 选项错误,则⎩⎪⎨⎪⎧ a -b +c ≠0,2a +b =0,4ac -b 24a =3,4a +2b +c =8,得⎩⎪⎨⎪⎧ a =5,b =-10,c =8,满足题意,故A 结论错误.同理易知当B 或C 或D 选项错误时不符合题意,故选A.2.已知函数f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当x ∈(0,1)时,f (x )取得极大值,当x ∈(1,2)时,f (x )取得极小值,则⎝ ⎛⎭⎪⎫b +122+(c -3)2的取值范围是( )A.⎝ ⎛⎭⎪⎫372,5 B .(5,5) C.⎝ ⎛⎭⎪⎫374,25 D .(5,25)答案 D解析 因为f ′(x )=3x 2+2bx +c ,f ′(x )的两个根分别在(0,1)和(1,2)内,所以f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ c >0,3+2b +c <0,12+4b +c >0,作出可行域如图中阴影部分所示(不包括b 轴),⎝ ⎛⎭⎪⎫b +122+(c -3)2表示可行域内一点到点P ⎝ ⎛⎭⎪⎫-12,3的距离的平方,由图象可知,P ⎝ ⎛⎭⎪⎫-12,3到直线3+2b +c =0的距离最小,即⎝ ⎛⎭⎪⎫b +122+(c -3)2的最小值为⎝ ⎛⎭⎪⎫|3-1+3|52=5,P ⎝ ⎛⎭⎪⎫-12,3到点A ⎝ ⎛⎭⎪⎫-92,6的距离最大,此时⎝ ⎛⎭⎪⎫b +122+(c -3)2=25,因为可行域的临界线为虚线,所以所求范围为(5,25),故选D.3.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-2,1)答案 C 解析 令f ′(x )=3x 2-3=0,得x =±1,且x =-1为函数f (x )的极大值点,x =1为函数f (x )的极小值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2,解得-5<a <1,且a ≥-2.故实数a 的取值范围是[-2,1).4.设函数f (x )=e x (sin x -cos x )(0≤x ≤2015π),则函数f (x )的各极小值之和为( )A .-e 2π(1-e 2015π)1-e 2πB .-e 2π(1-e 2015π)1-e πC .-1-e 2016π1-e 2πD .-e 2π(1-e 2014π)1-e 2π答案 D解析 因为f ′(x )=2e x sin x ,所以x ∈(2k π+π,2k π+2π)(k ∈Z )时,f ′(x )<0,f (x )单调递减,x ∈(2k π+2π,2k π+3π)(k ∈Z )时,f ′(x )>0,f (x )单调递增,故当x =2k π+2π(k ∈Z )时,f (x )取极小值,其极小值为f (2k π+2π)=-e 2k π+2π(k ∈Z ),又0≤x ≤2015π,所以f (x )的各极小值之和S =-e 2π-e 4π-…-e 2014π=-e 2π(1-e 2014π)1-e 2π,故选D. 5.已知点M 在曲线y =3ln x -x 2上,点N 在直线x -y +2=0上,则|MN |的最小值为________.答案 2 2解析 当点M 处的曲线的切线与直线x -y +2=0平行时|MN |取得最小值.令y ′=-2x +3x =1,解得x =1,所以点M 的坐标为(1,-1),所以点M 到直线x -y +2=0的距离为|1+2+1|2=22,即|MN |的最小值为2 2.6.函数f (x )=x 3-3x 2+6在x =________时取得极小值. 答案 2解析 依题意得f ′(x )=3x (x -2).当x <0或x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.因此,函数f (x )在x =2时取得极小值.7.设函数f (x )=(x +a )ln x ,g (x )=x 2e x .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +a x +1,所以a =1.(2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0,又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈[2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎨⎧ (x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0]时,若x ∈(0,1],m (x )≤0;若x ∈(1,x 0],由m ′(x )=ln x +1x +1>0.可知0<m (x )≤m (x 0).故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减.可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e 2.8.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a 3, x 2=-1+4+3a 3,x 1<x 2, 所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增.(2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增.所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减.所以f (x )在x =x 2=-1+4+3a 3处取得最大值. 又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0处和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值. 9.设函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k …是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.解 (1)f ′(x )=e x ·x 2-2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =(x -2)(e x -kx )x 3(x >0), 由k ≤0,知e x -kx >0,令f ′(x )=0,则x =2,当x ∈(0,2)时,f ′(x )<0,f (x )为减函数,当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.综上,f (x )的减区间为(0,2),增区间为(2,+∞).(2)由题意知f ′(x )=0,即e x -kx =0在(0,2)内存在两个不等实根. 令g (x )=e x -kx ,g ′(x )=e x -k ,令g ′(x )=0,x =ln k ,则0<ln k <2,即1<k <e 2.当0<x <ln k 时,g ′(x )<0,g (x )为减函数.当ln k <x <2时,g (x )为增函数.∵g (0)=1>0,只需⎩⎪⎨⎪⎧g (2)>0,g (ln k )<0,即⎩⎪⎨⎪⎧e 2-2k >0,e ln k -k ·ln k <0,得e<k <e 22. 综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫e ,e 22 10.已知函数f (x )=ln x -a (x 2-x )(a ∈R ).(1)当a =1时,求f (x )在点(1,f (1))处的切线方程;(2)求f (x )在[1,2]上的最大值.解 (1)当a =1时,f (x )=ln x -x 2+x ,f ′(x )=1x -2x +1. ∴f (1)=0,f ′(1)=0,即所求切线方程为:y =0.(2)∵f ′(x )=1x -2ax +a =-2ax 2+ax +1x,x >0. ∴当a =0时,f ′(x )>0,f (x )在[1,2]上单调递增.∴f (x )max =f (2)=ln 2.当a ≠0时,可令g (x )=-2ax 2+ax +1,x ∈[1,2],g (x )的对称轴x =14且过点(0,1).∴当a <0时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增, ∴f (x )max =f (2)=ln 2-2a .当a >0时,若g (1)≤0,即a ≥1时,f ′(x )<0在[1,2]上恒成立. f (x )在[1,2]上单调递减,∴f (x )max =f (1)=0.若g (1)>0,g (2)<0,即16<a <1时,f ′(x )在⎣⎢⎡⎭⎪⎫1,a +a 2+8a 4a 上大于零, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上小于零, ∴f (x )在⎣⎢⎡⎦⎥⎤1,a +a 2+8a 4a 上单调递增, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上单调递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫a +a 2+8a 4a =ln a +a 2+8a 4a +a 2+8a +a -48. 若g (1)>0,g (2)≥0,即0<a ≤16时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增,∴f (x )max =f (2)=ln 2-2a .综上:f (x )max =⎩⎪⎨⎪⎧ ln 2-2a ,a ≤16ln a +a 2+8a 4a +a 2+8a +a -48,16<a <10,a ≥1.11.已知函数f (x )=-x 3+ax 2-4(a ∈R ),f ′(x )是f (x )的导函数.(1)当a =2时,对于任意的m ∈[-1,1],n ∈[-1,1],求f (m )+f ′(n )的最小值;(2)若存在x 0∈(0,+∞),使f (x 0)>0,求a 的取值范围.解 (1)由题意得f (x )=-x 3+2x 2-4,f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或43.当x 在[-1,1]上变化时,f ′(x ),f (x )随x 的变化情况如下表:∵f ′(x )=-3x 2+4x 的对称轴为直线x =23,且抛物线开口向下,∴对于n ∈[-1,1],f ′(n )的最小值为f ′(-1)=-7.∴f (m )+f ′(n )的最小值为-11.(2)∵f ′(x )=-3x ⎝⎛⎭⎪⎫x -2a 3.①若a ≤0,当x >0时,f ′(x )<0,∴f (x )在(0,+∞)上单调递减.又f (0)=-4,则当x >0时,f (x )<-4.∴当a ≤0时,不存在x 0>0,使f (x 0)>0.②若a >0,则当0<x <2a 3时,f ′(x )>0;当x >2a 3时,f ′(x )<0.从而f (x )在⎝ ⎛⎦⎥⎤0,2a 3上单调递增,在⎣⎢⎡⎭⎪⎫2a 3,+∞上单调递减, ∴当x ∈(0,+∞)时,f (x )max =f ⎝ ⎛⎭⎪⎫2a 3=-8a 327+4a 39-4=427a 3-4. 根据题意,得4a 327-4>0,即a 3>27,解得a >3.综上,a 的取值范围是(3,+∞).1 利用导数证明不等式的常用技巧(1)利用给定函数的某些性质,如函数的单调性、最值、极值等,服务于所要证明的不等式.(2)当给出的不等式无法直接证明时,先对不等式进行等价转化后再进行求证.(3)根据不等式的结构特征构造函数,利用函数的最值进行求证,构造函数的方法较为灵活,要结合具体问题,平时要多积累.其一般步骤为:构造可导函数→研究其单调性求最值→得出不等关系→整理得出所证明的结论.2 导数在研究函数零点中的作用(1)研究函数图象的交点、方程的根、函数的零点归根到底是研究函数的性质,如单调性、极值等.(2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.3 利用导数求解实际问题中的优化问题生活中求利润最大、用料最省、效率最高等问题称之为优化问题.导数是解决生活中优化问题的有力工具,用导数解决优化问题的基本思路是:优化问题→用函数表示的数学问题→用导数解决数学问题→优化问题的答案.利用导数解决实际应用问题一般有如下几类:(1)给出了具体的函数关系式,只需研究这个函数的性质即可;(2)函数关系式中含有比例系数,根据已知数据求出比例系数得到函数关系式,再研究函数的性质;(3)没有给出函数关系,需要先建立函数关系,再研究函数的性质.注意点 函数定义域的重要性在函数的综合应用中,不论是研究函数的性质,还是构造函数,还是建立新的函数关系时,都要正确求出函数的定义域,再利用导数求解.1.思维辨析(1)2ax +e x≥x +1恒成立,可转化为a ≥x +1-e x2x 恒成立.( ) (2)对任意x ∈R ,f (x )≥g (x )恒成立,则f (x )min ≥g (x )max .( )(3)若函数y =f (x )与y =g (x )的图象有2个交点,则f (x )-g (x )有2个零点.( )答案 (1)× (2)× (3)√2.在区间(0,π)上,sin x 与x 的大小关系是________.答案 sin x <x解析 构造函数f (x )=sin x -x ,则f ′(x )=cos x -1≤0且不恒等于0,故函数f (x )在(0,π)上单调递减,所以f (x )<f (0)=0,故sin x <x .3.已知函数f (x )=x +1e x .(1)讨论函数f (x )的单调性,并求其最值;(2)若对任意的x ∈(0,+∞),有f (x )<ax 2+1恒成立,求实数a的取值范围.解 (1)f (x )=x +1e x ,f ′(x )=1-1e x =0,则x =0.当x ∈(-∞,0)时f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时f ′(x )>0,f (x )单调递增,所以f (x )的最小值为f (0)=1,无最大值.(2)由(1)知,若a =0,则当x >0时f (x )>1=ax 2+1,原不等式不成立.若a <0,则当x >0时,ax 2+1<1,原不等式不成立.若a >0,f (x )<ax 2+1等价于(ax 2-x +1)e x >1.设φ(x )=(ax 2-x +1)e x ,那么φ′(x )=[ax 2+(2a -1)x ]e x .若a ≥12,则φ(x )=(ax 2-x +1)e x 在(0,+∞)上单调递增,φ(x )的最小值大于φ(0)=1,因而(ax 2-x +1)e x >1恒成立.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1a -2时φ(x )单调递减,φ(x )<φ(0)=1,原不等式不成立.综上所述,实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. [考法综述] 函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有两个:一是围绕函数的性质考查函数的奇偶性、单调性、周期性、极值、最值,曲线的切线等问题展开,二是围绕函数与方程、不等式命制探索方程根的个数、不等式的证明、不等式恒成立等问题展开.此类压轴试题难度较大,逻辑推理能力较强,在今后的备考中不可小视.命题法1 利用导数证明不等式问题典例1 已知函数f (x )=e xx e x +1. (1)证明:0<f (x )≤1;(2)当x >0时,f (x )>1ax 2+1,求a 的取值范围. [解] (1)证明:设g (x )=x e x +1,则g ′(x )=(x +1)e x .当x ∈(-∞,-1)时,g ′(x )<0,g (x )单调递减;当x ∈(-1,+∞)时,g ′(x )>0,g (x )单调递增.所以g (x )≥g (-1)=1-e -1>0.又e x >0,故f (x )>0.f ′(x )=e x (1-e x )(x e x +1)2. 当x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增;当x ∈(0,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )≤f (0)=1.综上,有0<f (x )≤1.(2)①若a =0,则x >0时,f (x )<1=1ax 2+1,不等式不成立. ②若a <0,则当0<x <1-a时,1ax 2+1>1,不等式不成立. ③若a >0,则f (x )>1ax 2+1等价于(ax 2-x +1)e x -1>0.(*) 设h (x )=(ax 2-x +1)e x -1,则h ′(x )=x (ax +2a -1)e x .若a ≥12,则当x ∈(0,+∞)时,h ′(x )>0,h (x )单调递增,h (x )>h (0)=0.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1-2a a 时,h ′(x )<0,h (x )单调递减,h (x )<h (0)=0.不等式不恒成立.于是,若a >0,不等式(*)成立当且仅当a ≥12.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 【解题法】 利用导数证明不等式的方法(1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.(2)关于恒成立问题可以转化为求函数的最值.一般地,f (x )≥a 恒成立,只需f (x )min ≥a 即可;f (x )≤a 恒成立,只需f (x )max ≤a 即可.命题法2 利用导数研究函数的零点问题典例2 已知函数f (x )=4x -x 4,x ∈R .(1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a 3+4 13 .[解] (1)由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增;当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P 的坐标为(x 0,0),则x 0=4 13 ,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0).令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)·(x -x 0),则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减,故F ′(x )在(-∞,+∞)上单调递减.又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-413).设方程g(x)=a的根为x2′,可得x2′=-a12+413.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2′),因此x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1′,可得x1′=a4.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),因此x1′≤x1.由此可得x2-x1≤x2′-x1′=-a3+413.【解题法】利用导数研究零点问题的方法利用导数研究方程根、函数的零点、图象交点问题的常用方法为:通过导数研究函数的单调性、最值、变化趋势等,根据题目的要求得出图象的走势规律,通过数形结合的思想分析问题,使问题的求解清晰、直观的整体展现.命题法3利用导数求解实际生活中的优化问题典例3某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元,设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.[解] (1)设容器的容积为V ,由题意知V =πr 2l +43πr 3, 又V =80π3,故l =V -43πr 3πr 2=803r 2-43r =43⎝ ⎛⎭⎪⎫20r 2-r . 由于l ≥2r ,因此43⎝ ⎛⎭⎪⎫20r 2-r ≥2r , 整理得40r 2≥5r ,故0<r ≤2.所以建造费用y =2πrl ×3+4πr 2c =2πr ×43⎝ ⎛⎭⎪⎫20r 2-r ×3+4πr 2c . 因此y =4π(c -2)r 2+160πr ,0<r ≤2.(2)由(1)得y ′=8π(c -2)r -160πr 2=8π(c -2)r 2⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2. 由于c >3,所以c -2>0,当r 3-20c -2=0时,r =320c -2. 令 320c -2=m ,则m >0, 所以y ′=8π(c -2)r 2(r -m )(r 2+rm +m 2).①当0<m <2,即c >92时,当r =m 时,y ′=0;当r ∈(0,m )时,y ′<0;当r ∈(m,2)时,y ′>0.所以r =m 是函数y 的极小值点,也是最小值点.②当m ≥2,即3<c ≤92时,当r ∈(0,2]时,y ′<0,函数单调递减,所以r =2是函数y 的最小值点.综合所述,当3<c ≤92时,建造费用最小时r =2;当c >92时,建造费用最小时r =320c -2. 【解题法】 利用导数解决实际生活中的优化问题的方法(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函数关系式y =f (x ).(2)求导数f ′(x ),解方程f ′(x )=0.(3)判断使f ′(x )=0的点是极大值点还是极小值点.(4)确定函数的最大值或最小值,还原到实际问题中作答.一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.1.设f (x )是定义在R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,则关于x 的函数g (x )=f (x )+1x 的零点个数为( )A .1B .2C .0D .0或2答案 C 解析 由f ′(x )+f (x )x >0,得xf ′(x )+f (x )x>0,当x >0时,xf ′(x )+f (x )>0,即[xf (x )]′>0,函数xf (x )单调递增;当x <0时,xf ′(x )+f (x )<0,即[xf (x )]′<0,函数xf (x )单调递减.∴xf (x )>0f (0)=0,又g (x )=f (x )+x -1=xf (x )+1x ,函数g (x )=xf (x )+1x 的零点个数等价于函数y =xf (x )+1的零点个数.当x >0时,y =xf (x )+1>1,当x <0时,y =xf (x )+1>1,所以函数y =xf (x )+1无零点,所以函数g (x )=f (x )+x -1的零点个数为0.故选C.2.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴[x 2f (x )]′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x +2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.3.已知f (x )=ax -cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.若∀x 1∈⎣⎢⎡⎦⎥⎤π4,π3,∀x 2∈⎣⎢⎡⎦⎥⎤π4,π3,x 1≠x 2,f (x 2)-f (x 1)x 2-x 1<0,则实数a 的取值范围为________. 答案 a ≤-32解析 f ′(x )=a +sin x .依题意可知f (x )在⎣⎢⎡⎦⎥⎤π4,π3上为减函数,所以f ′(x )≤0对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立,可得a ≤-sin x 对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立.设g (x )=-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.易知g (x )为减函数,故g (x )min =-32,所以a ≤-32.4.已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).5.设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤ 3a -2e -1.解 (1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2 a )e ln a -a =(1+ln 2 a )a -a =a ln 2 a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点. 又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数, 故函数f (x )在(-∞,+∞)上仅有一个零点.(3)证明:设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP ,即(1+m )2e m =2e -1-a -0-1-0=a -2e . 由e m ≥1+m 知,(1+m )3≤(1+m )2e m=a -2e , 即1+m ≤ 3a -2e ,即m ≤ 3a -2e -1.6.已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞).则F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x . 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1. 当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1), 综上,k 的取值范围是(-∞,1). 7.设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 解 (1)由f (x )=x 22-k ln x (k >0),得 f ′(x )=x -k x =x 2-kx . 由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:∞);f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e]上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.。
导数的应用
导数是微积分中的重要概念,它有许多应用。
以下是一些常见的导数应用:
1. 切线和法线:导数可以用来确定函数曲线在某一点的切线和法线。
切线的斜率等于函数在该点的导数,而法线的斜率是切线的负倒数。
2. 最值问题:导数可以用来解决最值问题。
例如,对于一个函数,它的局部最大值或最小值出现在它的导数为零的点,或者在导数发生跃变的点。
3. 函数的增减性和凹凸性:导数可以用来研究函数的增减性和凹凸性。
如果函数在某一区间内的导数大于零,那么函数在该区间内是递增的;如果导数小于零,函数是递减的。
函数的凹凸性则与导数的二阶导数有关。
4. 曲线的弧长:导数可以用来计算曲线的弧长。
通过对曲
线的参数方程或者极坐标方程进行导数运算,可以得到弧
长公式。
5. 高阶导数:导数可以进行高阶运算,即对导数再进行导数。
高阶导数可用于描述函数的曲率、加速度等更高阶的
变化特性。
以上只是导数的一些简单应用,实际上导数在数学、物理、经济学等领域有着广泛的应用,包括优化问题、速度与加
速度的计算、函数逼近等等。