2017年秋季学期新版新人教版八年级数学上学期第12章、全等三角形单元复习试卷17
- 格式:doc
- 大小:286.00 KB
- 文档页数:4
人教新版八年级上学期《第12章全等三角形》单元测试卷一.选择题(共29小题)1.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°2.如图,△ACB≌△A′CB′,∠BCB′=32°,则∠ACA′的度数为()A.30°B.32°C.35°D.45°3.已知两个三角形中的两边和一边上的对角分别对应相等,则这两个三角形的关系是()A.不全等B.轴对称C.不一定全等D.全等4.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()A.AAS B.ASA C.SSS D.SAS5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,BD=5,则点D到BC的距离是()A.3B.4C.5D.66.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm7.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.8.AD=AE,AB=AC,BE、CD交于F,则图中相等的角共有(除去∠DFE=∠BFC)()A.2对B.3对C.4对D.5对9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC长是()A.3B.4C.6D.510.如图,已知AB=CB,若根据“SAS”判定△ABD≌△CBD,需要补充的一个条件是()A.∠A=∠C B.∠ADB=∠CDB C.∠ABD=∠CBD D.BD=BD 11.下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等12.下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个13.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC 与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°14.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,可作为证明△ABO≌△DCO的依据的是()A.SAS或SSS B.AAS或SSS C.ASA或AAS D.ASA或SAS 15.已知,如图在△ABC中,∠C=90°,AD平分∠BAC,CD=2cm,则点D到AB 的距离为()A.2cm B.3cm C.2.5cn D.3.5cm16.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处17.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S△ABD=()A.28B.21C.14D.718.如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠F B.∠AGF C.∠AEF D.∠D19.如图,已知△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边.若AC=2.2,CF=0.6,则CD的长是()A.2.2B.1.6C.1.2D.0.620.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD,CE交于点H,已知EH=EB=3,AE=5,则CH的长是()A.1B.2C.D.21.如图,点E、F在线段AC上,AD=BC,DF=BE,要使△ADF≌△CBE,可添加的条件是()A.AD∥BC B.DF∥BE C.∠A=∠C D.AE=CF22.已知△ABC≌△DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35°D.45°23.如图,已知△ABC≌△ADC,∠B+∠D=160°,则∠B的度数是()A.80°B.90°C.100°D.120°24.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④25.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等②三条边对应相等的两个三角形全等③有两边和它们的夹角对应相等的两个三角形全等④有两边和其中一边上的高对应相等的两个三角形全等正确的说法个数是()A.1个B.2个C.3个D.4个26.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS27.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去28.如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线,若AC=10,CD=6,则点D到BC的距离是()A.10B.8C.6D.429.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为()A.9B.12C.15D.18二.填空题(共21小题)30.如图,已知△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠ACD=度.31.如图所示,在平面直角坐标系中,已知△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),D、E两点都在y轴上,则F点到y 轴的距离为.32.如图,△ABC≌△DEF,AB=15cm,AC=13cm,则DE=.33.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,一条线段PQ=AB=10,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,如果以A、P、Q为顶点的三角形与△ABC全等,则AP=.34.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFD的理由是.35.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,E是斜边AB上的动点,若CD=3cm,则DE长度的最小值是cm.36.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有.(填序号即可)37.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=5cm,则线段DF的长度为cm.38.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是.39.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=140°,则∠EDF=.40.如图所示,在△FED中,AD=FC,∠A=∠F,如果用“SAS”证明△ABC≌△FED,只需添加条件即可.41.如图,△ABC≌△DEF,则∠E的度数为.42.如图,已知△EFG≌△NMH,若EF=2.1,则MN=.43.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.44.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.45.如图,在△ABC中,点D为BC的中点,△AEF的边EF过点C,且AE=EF,AB∥EF,AD平分∠BAE,CE=2,AB=9,则CF=.46.在△ABC中,∠ABC=90°,AB=14,点D是边AB上的中点,AE⊥AB,连接CD、CE,CD平分∠BCE,且CE=10AE,则四边形ADCE的面积为.47.如图,黄芳不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配.48.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为厘米.49.在△ABC中,AD是它的角平分线,已知AB:AC=5:3,S△ABC=16,则S△ADC=.50.如图所示,在Rt△ABC中,∠C=90°,AM是∠CAB的平分线,CM=1.5cm,若AB=8cm,则S=cm2.△AMB人教新版八年级上学期《第12章全等三角形》单元测试卷参考答案与试题解析一.选择题(共29小题)1.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.2.如图,△ACB≌△A′CB′,∠BCB′=32°,则∠ACA′的度数为()A.30°B.32°C.35°D.45°【分析】根据全等三角形对应角相等可得∠ACB=∠A′CB′,然后求出∠ACA=∠BCB'.【解答】解:∵△ACB≌△A'CB',∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB',∵∠BCB'=32°,∴∠ACA'的度数为32°.故选:B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并求出∠ACA'=∠BCB'是解题的关键.3.已知两个三角形中的两边和一边上的对角分别对应相等,则这两个三角形的关系是()A.不全等B.轴对称C.不一定全等D.全等【分析】根据全等三角形的判定解答即可.【解答】解:两个三角形中的两边和一边上的对角分别对应相等,其三角形不一定全等,故选:C.【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.4.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()A.AAS B.ASA C.SSS D.SAS【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【解答】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,BD=5,则点D到BC的距离是()A.3B.4C.5D.6【分析】作DH⊥BC于H,根据角平分线的性质解答.【解答】解:作DH⊥BC于H,∵BD平分∠ABC,∠A=90°,DH⊥BC,∴DH=AD=3,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm【分析】根据直线、射线、线段的性质即可一一判断.【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.【点评】本题考查作图﹣尺规作图,解题的关键是熟练掌握基本概念,属于中考基础题.7.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.【分析】认真观察图形,可以看出选项中只有C中的两个可以平移后重合,其它三个大小或形状不一致.【解答】解:由全等形的概念可知:A、B中的两个图形大小不同,D中的形状不同,C则完全相同,故选:C.【点评】本题考查的是全等形的识别,做题时要注意运用定义,注意观察题中图形,属于较容易的基础题.8.AD=AE,AB=AC,BE、CD交于F,则图中相等的角共有(除去∠DFE=∠BFC)()A.2对B.3对C.4对D.5对【分析】只要证明△ABE≌△ACD(SAS),即可解决问题;【解答】解:∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴∠B=∠C,∠AEB=∠ADC,∴∠BEC=∠BDC,∵∠DFB=∠EFC,∴共有4对角相等,故选:C.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC长是()A.3B.4C.6D.5【分析】作DH⊥AC于H,根据角平分线的性质求出DH,根据三角形的面积公式计算.【解答】解:作DH⊥AC于H,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=3,由题意得,×8×3+×AC×3=18,解得,AC=4,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知AB=CB,若根据“SAS”判定△ABD≌△CBD,需要补充的一个条件是()A.∠A=∠C B.∠ADB=∠CDB C.∠ABD=∠CBD D.BD=BD【分析】利用公共边BD以及AB=CB,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【解答】解:如图,∵在△ABD与△CBD中,AB=CB,BD=BD,∴添加∠ABD=∠CBD时,可以根据SAS判定△ABD≌△CBD,故选:C.【点评】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.11.下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:A、一个锐角和斜边对应相等,正确,符合AAS,B、两条直角边对应相等,正确,符合判定SAS;C、不正确,全等三角形的判定必须有边的参与;D、斜边和一条直角边对应相等,正确,符合判定HL.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个【分析】画出两直角三角形,根据选项条件结合图形逐个判断即可.【解答】解:①两条直角边分别相等;正确;②两个锐角分别相等;错误;③斜边和一条直角边分别相等,正确;④一条边和一个锐角分别相等;错误;⑤斜边和一锐角分别相等;正确;⑥两条边分别相等,错误;其中能判断两个直角三角形全等的有3个.故选:D.【点评】本题考查了直角三角形全等的判定的应用,注意:直角三角形的全等的判定定理有SAS,ASA,AAS,SSS,HL.13.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC 与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°【分析】先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.【解答】解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL),∴∠1=∠4,∵∠3+∠4=90°,∴∠ACB+∠DEF=90°.故选:C.【点评】本题考查的是直角三角形全等的判定及性质,直角三角形的性质,属基础题目.14.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,可作为证明△ABO≌△DCO的依据的是()A.SAS或SSS B.AAS或SSS C.ASA或AAS D.ASA或SAS 【分析】直接利用全等三角形的判定方法得出符合题意的答案.【解答】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠OCD=90°,在△ABO和△DCO中,∴△ABO≌△DCO(ASA),则证明△ABO≌△DCO的依据的是ASA,也可以利用AAS得出.故选:C.【点评】此题主要考查了全等三角形的判定,正确掌握全等三角形的判定方法是解题关键.15.已知,如图在△ABC中,∠C=90°,AD平分∠BAC,CD=2cm,则点D到AB 的距离为()A.2cm B.3cm C.2.5cn D.3.5cm【分析】过D点作DE⊥AB于点E,根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=2cm,∴DE=2cm.故选:A.【点评】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.16.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并是解题的关键,作出图形更形象直观.17.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S△ABD=()A.28B.21C.14D.7【分析】利用角平分线的性质定理即可解决问题;【解答】解:作DH⊥BA于H.∵BD平分∠ABC,BC⊥DE,DH⊥AB,∴DH=DE=4,=×7×4=14,∴S△ABD故选:C.【点评】本题考查角平分线的性质定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠F B.∠AGF C.∠AEF D.∠D【分析】根据已知条件AC∥DF,BC∥EF,即可得到∠D=∠BAC,∠B=∠DEF,又因为△ABC≌△DEF,所以对应角相等,依此来解答即可.【解答】解:∵△ABC≌△DEF,∴△ABC与△DEF的对应角相等;∵AC∥DF,BC∥EF,∴∠D=∠BAC,∠B=∠DEF,∵∠C是△ABC的一个内角,∴∠C的对应角为∠F,故选:A.【点评】本题主要考查了全等三角形的性质,由全等的性质得出相等的边、角,根据平行线得到一对对应角相等,从而得到对应关系,找准对应关系式正确解题的关键.19.如图,已知△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边.若AC=2.2,CF=0.6,则CD的长是()A.2.2B.1.6C.1.2D.0.6【分析】根据全等三角形的性质得AC=DF,则依据CF=0.6可得CD的长.【解答】解:△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边,∴AC=DF=2.2,又∵CF=0.6,∴CD=DF﹣CF=2.2﹣0.6=1.6,故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.20.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD,CE交于点H,已知EH=EB=3,AE=5,则CH的长是()A.1B.2C.D.【分析】由AD垂直于BC,CE垂直于AB,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS得到三角形AEH与三角形EBC全等,由全等三角形的对应边相等得到AE=EC,由EC﹣EH,即AE﹣EH即可求出HC 的长.【解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=5,则CH=EC﹣EH=AE﹣EH=5﹣3=2.故选:B.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.21.如图,点E、F在线段AC上,AD=BC,DF=BE,要使△ADF≌△CBE,可添加的条件是()A.AD∥BC B.DF∥BE C.∠A=∠C D.AE=CF【分析】根据全等三角形的判定方法即可解决问题;【解答】解:选项D正确.理由:∵AE=CF,∴AF=EC,在△ADF和△CBE中,,∴△ADF≌△CBE(SSS),故选:D.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.22.已知△ABC≌△DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35°D.45°【分析】根据全等三角形的性质,得出∠D=∠A=35°即可.【解答】解:∵△ABC≌△DEF,∴∠A=∠D,∵∠A=35°,∴∠D=35°,故选:C.【点评】本题考查了全等三角形的性质,注意:全等三角形的对应角相等,对应边相等.23.如图,已知△ABC≌△ADC,∠B+∠D=160°,则∠B的度数是()A.80°B.90°C.100°D.120°【分析】根据全等三角形对应角相等求出∠B的度数.【解答】解:∵△ABC≌△ADC,∴∠B=∠D,∵∠B+∠D=160°,∴∠B=80°,故选:A.【点评】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母放在对应位置结合图形准确确定对应角是解题的关键.24.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④【分析】想办法证明△FAB≌△EAC(SAS),利用全等三角形的性质即可解决问题;【解答】解:∵∠EAF=∠BAC,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△FAB≌△EAC(SAS),故①正确,∴BF=EC,故②正确,∴∠ABF=∠ACE,∵∠BDF=∠ADC,∴∠BFD=∠DAC,∴∠BFD=∠EAF,故③正确,无法判断AB=BC,故④错误,故选:A.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等②三条边对应相等的两个三角形全等③有两边和它们的夹角对应相等的两个三角形全等④有两边和其中一边上的高对应相等的两个三角形全等正确的说法个数是()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定方法一一判断即可;【解答】解:①三个角对应相等的两个三角形全等;错误;②三条边对应相等的两个三角形全等;正确;③有两边和它们的夹角对应相等的两个三角形全等;正确;④有两边和其中一边上的高对应相等的两个三角形全等;错误(一个锐角三角形,一个钝角三角形不全等)故选:B.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.26.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.27.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要根据已知条件进行选择运用.28.如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线,若AC=10,CD=6,则点D到BC的距离是()A.10B.8C.6D.4【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=AD,根据已知可得AD=4,所以DE=4,即D点到BC的距离是4.【解答】解:过点D作DE⊥BC于点E,∵已知∠A=90°,BD是∠ABC的平分线,DE⊥BC,∴∠A=∠DEB=90°,根据角平分线的性质可得:DE=AD.∵AC=10,CD=6,∴DA=4.∴DE=4,即D点到BC的距离是4,故选:D.【点评】本题主要考查角平分线的性质,作出辅助线是解决本题的关键,难度适中.29.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为()A.9B.12C.15D.18【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,继而利用三角形面积解答即可.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵△ABD的面积等于18,∴△ABD的面积=AB•DE=×AB×3=18.∴AB=12,故选:B.【点评】本题考查了角平分线的性质,能根据角平分线性质得出DE=CD是解此题的关键,注意:角平分线上的点到这个角两边的距离相等.二.填空题(共21小题)30.如图,已知△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠ACD=15度.【分析】根据三角形内角和定理求出∠ABC的度数,根据全等三角形的性质求出∠DCB的度数,计算即可.【解答】解:∵∠A=75°,∠ACB=45°,∴∠ABC=60°,∵△ABC≌△DCB,∴∠DCB=∠ABC=60°,∴∠ACD=∠DCB﹣∠ACB=15°,故答案为:15.【点评】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.31.如图所示,在平面直角坐标系中,已知△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),D、E两点都在y轴上,则F点到y 轴的距离为3.【分析】作AH⊥BC于H,FP⊥DE于P,根据全等三角形的性质得到AC=DF,∠C=∠FDE,推出△ACH≌△DFP(AAS),根据全等三角形的性质得到AH=FP,根据A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),得到AH=3,即可得到结论.【解答】解:如图,作AH⊥BC于H,FP⊥DE于P,∵△ABC≌△FDE,∴AC=DF,∠C=∠FDE,在△ACH和△DFP中,,∴△ACH≌△DFP(AAS),∴AH=FP,∵A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),∴AH=3,∴FP=3,∴F点到y轴的距离为3,故答案为:3.【点评】本题考查了坐标与图象的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,等腰三角形的性质的运用,解答时证明三角形全等是关键.32.如图,△ABC≌△DEF,AB=15cm,AC=13cm,则DE=15cm.【分析】利用全等三角形的性质即可判断;【解答】解:∵△ABC≌△DEF,∴AB=DE,∵AB=15cm,∴DE=15cm,故答案为15cm.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.33.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,一条线段PQ=AB=10,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,如果以A、P、Q为顶点的三角形与△ABC全等,则AP=6或8.【分析】理由全等三角形的性质即可判断;【解答】解:∵∠C=∠PAQ=90°,又∵以A、P、Q为顶点的三角形与△ABC全等,∴PA=BC或PA=AC,∵BC=6,AC=8,∴PA=6或8,故答案为6或8.【点评】本题考查全等三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.34.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFD的理由是AAS.【分析】根据垂直定义求出∠AEC=∠BFD=90°,根据平行线的性质得出∠A=∠B,根据全等三角形的判定定理AAS推出即可.【解答】解:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B.在△AEC和△BFD中,∴Rt△AEC≌Rt△BFC(AAS),故答案为:AAS.【点评】本题考查了全等三角形的判定,平行线的性质,垂直定义的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL 定理.35.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,E是斜边AB上的动点,若CD=3cm,则DE长度的最小值是3cm.【分析】过D点作DE⊥AB于点E,根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE,∵CD=3cm,∴DE=3cm,即DE长度的最小值是3cm.故答案为:3.【点评】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.36.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有③⑤.(填序号即可)【分析】①根据确定圆的两个条件:圆心和半径判断即可;②根据射线的性质判断即可;③根据基本作图:作一个角等于已知角判断即可;④根据直线的性质判断即可;⑤根据平行公理判断即可.【解答】解:①以O为圆心作弧可以画出无数条弧,因为半径不固定,所以叙述错误;②射线AB是由A向B向无限延伸,所以叙述错误;③根据作一个角等于已知角的作法,可以作一个角∠AOB,使∠AOB等于已知∠1,所以叙述正确;④直线可以向两方无限延伸,所以叙述错误;⑤根据平行公理:过直线外一点有且只有一条直线与已知直线平行,可以过三角形ABC的顶点C作它的对边AB的平行线,所以叙述正确.所以正确的有③⑤.故答案为:③⑤.【点评】本题考查作图﹣尺规作图的定义,涉及到直线、射线及圆、角、平行线的知识,属于基础题,注意掌握射线只能反方向延长,直线不能延长,确定。
人教版八年级数学上学期试题:第12章全等三角形单元练习A卷一.选择题(每题3分,共36分)1.下列各组图形中,是全等三角形的是()A.两个含70°角的直角三角形B.斜边对应相等的两个等腰直角三角形C.边长分别为3和4的两个等腰三角形D.腰长相等的两个等腰三角形2.某同学不小心把一块三角形的玻璃打碎成了三块,如图所示,现要到玻璃店去配一块完全一样的玻璃,需要带去三块玻璃中的()A.第①块B.第②块C.第③块D.第①②块3.已知△ABC内一点M,如果点M到两边AB、BC的距离相等,那么点M()A.在AC边的高上B.在AC边的中线上C.在∠ABC的平分线上D.在AC边的垂直平分线上4.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个5.如图,△ABC≌△DEF,DF和AC,EF和BC为对应边,若∠A=123°,∠F=39°,则∠DEF等于()A.18°B.20°C.39°D.123°6.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是()A.0.5 B.1 C.1.5 D.27.已知AD是△ABC中BC边上的中线,AB=4,AC=6,则AD的取值范围是()A.2<AD<10 B.1<AD<5 C.4<AD<6 D.4≤AD≤68.如图,点D在线段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°﹣∠ABC﹣2x°,则下列角中,大小为x°的角是()A.∠EFC B.∠ABC C.∠FDC D.∠DFC9.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.2810.如图,在Rt△ABC中,∠C=90°,以A为圆心,以任意长为半径画弧,分别交AC、AB 于点M、N,再分别以点M、N为圆心,以一个定长为半径画弧,两弧交于点P,作射线AP 交BC于点D.若AC=4,BC=3,则CD的长为()A.B.C.D.11.如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°12.已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()A.20 B.40 C.60 D.100二.填空题(每题4分,共16分)13.如图,△ABC中,已知AB=5,AC=4,AD平分∠BAC交BC于D,DE⊥AC交AC于点E,若DE=2,则△ABC的面积为.14.若△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则△ABC的面积为.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=20°,∠2=25°,则∠3=.16.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DH⊥AC,垂足为H,DE=DG,△ADG 和△DEH的面积分别为49和6,则△ADE的面积为.三.解答题(共48分,共5题)17.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=16,DE=4,求△ADC的面积.18.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.19.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD =∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:△ABF≌△DCE;(2)若∠AOE=80°,求∠OEF的度数.21.如图,已知∠ABC=90°,D是直线AB上一点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF.①求证:AF+AB=BC②判断FD与DC的关系并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.参考答案一.选择题1.解:A、两个含70°角的直角三角形,缺少对应边相等,所以不是全等三角形;B、斜边对应相等的两个等腰直角三角形,符合AAS或ASA,是全等三角形;C、边长分别为3和4的两个等腰三角形有可能是3,3,4或4,4,3,对应关系不明确,不一定全等;D、腰长相等的两个等腰三角形,缺少对应边相等或夹角相等,不是全等三角形.故选:B.2.解:根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带③去才能配一块完全一样的玻璃,是符合题意的.故选:C.3.解:∵ME⊥AB,MF⊥BC,ME=MF,∴M在∠ABC的角平分线上,故选:C.4.解:如图所示:一共有7个符合题意的点.故选:D.5.解;∵△ABC≌△DEF,∠A=123°,∴∠D=∠A=123°,∵∠F=39°,∴∠DEF=180°﹣123°﹣39°=18°,故选:A.6.证明:∵FC∥AB∴∠FCE=∠DAE,在△CFE和△ADE中,∴△CFE≌△ADE(ASA),∴AD=CF=5,∵AB=3,∴BD=5﹣3=2,故选:D.7.解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=4,AC=6,∴6﹣4<AE<6+4,即2<AE<10,∴1<AD<5.故选:B.8.解:∵BC=DE,AC=DC,AB=EC,∴△ABC≌△CED(SSS),∴∠EDC=∠ACB,∠ABC=∠DEC,∵∠ACE=180°﹣∠ABC﹣2x°,∴∠ACE+∠ABC=180°﹣2x°,∵∠DFC=∠DEC+∠ACE,∴∠DFC=180°﹣2x°,∵∠DFC+∠FDC+∠FCD=180°,∴∠FDC=x°.故选:C.9.解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.10.解:过点D作DE⊥AB于点E,如图所示:∵∠C=90°,由作图方法可知AP是∠BAC的平分线,∴CD=DE,设CD=DE=x,在Rt△ABC中,∵AC=4,BC=3,∴AB=5.∵∠C=∠AED=90°,AD=AD,DC=DE,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE=4,∴EB=1,在Rt△DEB中,∵BD2=DE2+BE2,∴(3﹣x)2=x2+12,解得:x=.故选:B.11.解:∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣62°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故选:A.12.解:∵BO、CO分别平分∠ABC、∠PCB,∴∠OBC=∠ABC,∠OCB=∠PCB,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠ABC+∠PCB),=180°﹣(180°﹣∠BPC),=90°+∠BPC=90°+(∠A+∠ACP),=110°+∠ACP,∵∠A=40°,∠CBA=60°,∴∠ACB=180°﹣∠A﹣∠CBA=180°﹣40°﹣60°=80°,∵P点在AB边上且不与A、B重合,∴0°<∠ACP<80°,∴0°<2∠BOC﹣220°<80°,∴110°<∠BOC<150°,∴m=110,n=150.∴n﹣m=40.故选:B.二.填空题(共4小题)13.解:过点D作DF⊥AB于F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴DF=DE=2,∴△ABC的面积=△ABD的面积+△ACD的面积=×5×2+×4×2=9,故答案为:9.14.解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,∴AC=12﹣AB﹣BC=12﹣3﹣4=5,AC2=52=25,AB2+BC2=32+42=25,∴AC2=AB2+BC2,∴△ABC为直角三角形,∴△ABC的面积=×AB×BC=×3×4=6,故答案为:6.15.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=25°,∴∠3=∠1+∠ABD=25°+20°=45°.故答案为:45°.16.解;如图所示:∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DF =DH ,∠DFG =DHE =90°,在Rt △DFG 和Rt △DHE 中,,∴Rt △DFG ≌Rt △DHE (HL ),∴S △DFG =S △DHE ,又∵S △DHE =6,∴S △DFG =6,在△ADF 和△ADH 中,,∴△ADF ≌△ADH (AAS ),∴S △ADF =S △ADH ,又∵S △ADG =S △ADF +S △DFG ,S △ADG =49,∴S △ADF =S △ADH =49﹣6=43,又∵S △ADH =S △ADE +S △DEH ,∴S △ADE =S △ADH ﹣S △DEH =43﹣6=37故答案为37.三.解答题(共5小题)17.(1)证明:∵DE ⊥AB ,DF ⊥AC ,∴∠E=∠DFC=90°,在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵DE=DF,DE=4,∴DF=4,∵AC=16,∴△ADC的面积是==32.18.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.19.证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,∵∠ABD=∠ACD,∠AOB=∠COD,∴∠BDC=∠BAC=50°.20.(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS);(2)解:∵△ABF≌△DCE,∴∠AFB=∠DEC,∵∠AOE=80°,∴∠OEF=∠OFE=AOE=40°.21.(1)证明:①∵AD=BC,∴AD=AB+BD,AF=BD,∴AF+AB=BC.②∵AF⊥AB,∴∠FAD=90°,又∵∠DBC=90°,∴∠FAD=∠DBC,∵AF=BD,AD=BC,∴△FAD≌△DBC(SAS),∴FD=CD,∠ADF=∠BCD,∴∠BDC+∠ADF=∠BDC+∠BCD=90°,即DF⊥DC;(2)解:作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.。
人教版八年级数学第12章全等三角形综合复习一、选择题(本大题共10道小题)1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是( )A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2.如图,已知AB=DE,∠B=∠E,为了直接用“ASA”说明△ABC≌△DEF,则需要添加的条件是( )A.BC=EF B.∠A=∠DC.∠C=∠F D.AC=DF3. 如图,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A.5B.8C.10D.154.如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去( )A.只带①B.只带②C.只带③D.带①和②5.如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有( )A.1对B.2对C.3对D.4对6.已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是( )A.只有乙B.只有丙C.甲和乙D.乙和丙7. 如图,若AB=AC,AD=AE,∠BAC=∠DAE,则∠ABD等于( )A.∠EAC B.∠ADE C.∠BAD D.∠ACE8. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC 的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm9. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+B.C.D.310. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有( )A.4个B.3个C.2个D.1个二、填空题(本大题共7道小题)11.如图,已知AB=BC,要使△ABD≌△CBD,还需要添加一个条件,你添加的条件是____________.(只需写一个,不添加辅助线)12.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13.如图,在四边形ABCD中,∠B=∠D=90°,AB=AD,∠BAC=65°,则∠ACD 的度数为________.14.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).15.如图,点O在△ABC的内部,且到三边的距离相等.若∠BOC=130°,则∠A=________°.16.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.三、解答题(本大题共4道小题)18. 已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.(1)如图K-10-13①,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图②,画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据以上作图步骤,请你证明∠A′O′B′=∠AOB.19.如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E ,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF 的面积之和.20.如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=A B,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.21.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.人教版 八年级数学 第12章 全等三角形 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A[解析] ∵△ABC ≌△EDF ,AC=15,∴EF=AC=15. ∵EC=10,∴CF=EF-EC=15-10=5.4.【答案】C [解析]由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎪⎨⎪⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF中,⎩⎪⎨⎪⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎪⎨⎪⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).6. 【答案】D7.【答案】D [解析]∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS).∴∠ABD =∠ACE.8. 【答案】B[解析] 如图,过点D 作DF ⊥AC 于点F .∵AD是△ABC的角平分线,DE⊥AB, ∴DE=DF=4.∵AB=6,∴S△ABC =S△ABD+S△ACD=×6×4+AC×4=30,解得AC=9(cm).故选B.9. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD==,∴BC=BD+CD=,故选A.10. 【答案】A [解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如AD =CD [解析] 因为AB =BC ,BD =BD ,所以:(1)当AD =CD 时,△ABD ≌△CBD(SSS);(2)当∠ABD =∠CBD 时,△ABD ≌△CBD(SAS);(3)当∠A =∠C =90°时,Rt △ABD ≌Rt △CBD(HL).12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】25°14. 【答案】② [解析] ∵已知∠ABC =∠DCB ,且BC =CB ,∴若添加①∠A =∠D ,则可由“AAS”判定△ABC ≌△DCB ;若添加②AC =DB ,则属于“SSA”,不能判定△ABC ≌△DCB ;若添加③AB =DC ,则可由“SAS”判定△ABC ≌△DCB.15. 【答案】80 [解析] ∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB.∴∠A=180°-(∠ABC+∠ACB)=180°-2(∠OBC+∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】4∶3【解析】如解图,过D作DE⊥AB,DF⊥AC,垂足分别为E、F,∵AD是∠BA C的平分线,∴DE=DF(角平分线上的点到角两边的距离相等),设DE=DF=h,则S△ABDS△ACD=12AB·h12AC·h=43.17. 【答案】5或10 [解析] ∵AX⊥AC,∴∠PAQ=90°.∴∠C=∠PAQ=90°.分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,⎩⎪⎨⎪⎧AB=QP,BC=PA,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在Rt△ABC和Rt△PQA中,⎩⎪⎨⎪⎧AB=PQ,AC=PA,∴Rt△ABC≌Rt△PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.三、解答题(本大题共4道小题)18. 【答案】证明:由作法得OD =OC =O′D′=O′C′,CD =C′D′.在△OCD 和△O′C′D′中,⎩⎪⎨⎪⎧OC =O′C′,OD =O′D′,CD =C′D′,∴△OCD ≌△O′C′D′.∴∠COD =∠C′O′D′,即∠A′O′B′=∠AOB.19. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BA C =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎪⎨⎪⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD .∵CD =2BD ,△ABC 的面积为15,∴S △ACD =10.∴S △ABE +S △CDF =10.20. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎪⎨⎪⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .21. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.。
章节测试题1.【题文】如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.【答案】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解答【分析】由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.【解答】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).2.【题文】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20米.【分析】已知AB∥CD,根据平行线的性质可得∠ABO=∠CDO,再由垂直的定义可得∠CDO=90°,可得OB⊥AB,根据相邻两平行线间的距离相等可得OD=OB,即可根据ASA定理判定△ABO≌△CDO,由全等三角形的性质即可得CD=AB=20m.【解答】∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)3.【题文】我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD. 对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【答案】证明见解答.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.4.【题文】已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【答案】(1)证明见解答(2)证明见解答【分析】(1)由SAS证明△ADB≌△AEC,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)在△ADB和△AEC中,∴△ADB≌△AEC∴BD=CE(2)∵∴即又△ADB≌△AEC∴180°-即.5.【题文】如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【答案】(1)FE=FD(2)答案见解答【分析】(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.【解答】(1)FE与FD之间的数量关系为:FE=FD.理由:如图,在AC上截取AG=AE,连结FG,∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∴2∠2+2∠3+∠B=180°,∴∠2+∠3=60°,又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,∴∠CFG=180°-60°-60°=60°,∴∠GFC=∠DFC,在△CFG与△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD;(2)结论FE=FD仍然成立.如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心,∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH,又∵∠HDF=∠B+∠1=60°+∠1,∴∠GEF=∠HDF,在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.6.【答题】下列说法正确的是()A. 两个面积相等的图形一定是全等形B. 两个长方形是全等图形C. 两个全等图形形状一定相同D. 两个正方形一定是全等图形【答案】C【分析】根据全等图形的概念即可得出答案.【解答】A、面积相等,但图形不一定完全重合,故错误,B、两个长方形,图形不一定完全重合,故错误;C、全等图形∵完全重合,∴形状一定相同,故正确,D、两个正方形,面积不相等,也不是全等图形,故答案选C.7.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】根据全等三角形对应角相等可知∠α是a、c边的夹角,然后写出即可.【解答】∵两个三角形全等,∴∠α的度数是50°.选D.8.【答题】如图,在下列条件中,不能证明△ABD≌△ACD的是().A. BD=DC,AB=ACB. ∠ADB=∠ADC,BD=DCC. ∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.【解答】∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.选D.9.【答题】如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A. SASB. ASAC. AASD. HL【答案】D【分析】本题考查了直角三角形全等的判定.【解答】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),选D.10.【答题】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD等于()A. 6cmB. 8cmC. 10cmD. 4cm【答案】B【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=3cm,CD=AB=5cm,∴BD=BC+CD=3+5=8cm,故答案选B.11.【答题】如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A. AD=BCB. ∠DAB=∠CBAC. △ACE≌△BDED. AC=CE【答案】D【分析】本题考查了全等三角形的判定与性质.【解答】在和中,,∴≌,∴,正确,,正确,在和中,,∴在≌,∴正确.无从得证.选.12.【答题】如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】B【分析】本题考查了全等三角形的应用.【解答】解:如图,连接AB,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE选B13.【答题】如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC =()A. 120°B. 125°C. 130°D. 140°【答案】A【分析】由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).在△BOC中利用三角形的内角和定理可求得∠BOC.【解答】∵O到三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).∵∠A=60°,∴∠OBC+∠OCB=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.选A.14.【答题】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A. 12B. 6C. 7D. 8【答案】B【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△DEF=S△DGH,然后列式求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△DEF=S△DGH,∵△ADG和△AED的面积分别为40和28,∴△EDF的面积=×(40-28)=6.选B.15.【答题】如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. ①②③④B. ①②④C. ①②③D. ②③④【答案】A【分析】根据等腰三角形、全等三角形的判定与性质即可得到答案.【解答】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.16.【答题】已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠BCE=______.【答案】20°【分析】根据全等三角形的基本性质即可得到答案.【解答】∵△ADF≌△CBE,∴∠BCE=∠DAF=∠A=20°,故答案为20°.17.【答题】如图,△ABC≌△CDA,则AB与CD的位置关系是______.【答案】AB∥CD【分析】根据全等三角形的性质得出边和角的关系,进一步可得到AB与CD的关系即可得到答案.【解答】∵△ABC≌△CDA,则∠ACD=∠BAC,∴AB∥CD,故答案为AB∥CD.18.【答题】如图,在中,点A的坐标为,点B的坐标为,点C 的坐标为,点D在第二象限,且与全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【分析】本题考查了全等三角形的性质、点的坐标.【解答】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC 全等.故答案为(-4,2)或(-4,3).19.【答题】如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若加条件∠B=∠C,则可用______判定.【答案】AAS【分析】根据全等三角形的判定从而得到答案.【解答】已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS,故答案为AAS.20.【答题】如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是______.【答案】①②④【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,AB=AD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故④正确∴BC=DC,故②正确;故答案为①②④.。
第十一章 全等三角形 全等三角形小结与复习考点呈现考点一 全等三角形的概念和性质例1 下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的对应边相等,对应角相等;④经过平移得到的三角形与原图形是全等形.其中正确的命题有 ( ) A. 1个 B. 2个 C. 3个 D. 4个解析:全等三角形是指两个完全重合的三角形,不仅形状相同,大小也相同,两者缺一不可.互相重合的边叫做对应边,互相重合的角叫做对应角,平移、翻折、旋转不改变图形的大小与形状,所以③④正确.故选B.点评:本题主要考查了全等三角形的概念和性质,注意把一个图形平移、旋转、折叠后得到的图形与原来的图形全等.例2 如图1,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若︒=∠64CDE ,则ADP ∠等于 ( )A .42°B .48°C .52°D .58°解析:由题意知△C DE ≌△PDE ,所以︒=∠=∠64CDE PDE ,则︒=︒-︒-︒=∠-∠︒=∠526464180-180PDE CDE ADP .故选C.点评:本题以折叠为背景,主要考查全等三角形的性质,运用全等三角形的对应角相等结合平角的概念解决问题.考点二 三角形全等的判定例3 (2010年四川巴中)如图2,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件 不能是 ( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE解析:已知AB =AC ,还有一个公共角∠A ,具备了一边一角的条件,可根据“SAS ”添加AD =AE ;可根据“ASA ”添加∠B =∠C ;可根据“AAS ”添加∠ADC =∠AEB ;若添加DC =BE ,则是 “SSA”不能判定两个三角形全等.故选D. 点评:本题目是一道条件开放型问题,判定三角形全等的方法有“SSS 、SAS 、AAS 、ASA ”,要根据已知条件添加一条边或一个角满足以上四个判定方法即可,但是需注意添加边时,不能构成“SSA ”的形式. 例4 (2010年四川凉山州)如图3,已知∠E =∠F =90°,∠B = ∠C ,AE =AF .有下列结论:①EM =FN ;②CD =DN ;③∠FAN = ∠EAM ;④△ACN ≌△ABM .其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个解析:因为∠E =∠F =90°,∠B =∠C ,AE =AF ,所以△AEB ≌△AFC .所以AC =AB, ∠EAB =∠FAC .在△ACN 和△ABM 中,∠C =∠B ,AC =AB ,∠CAB =∠BAC ,所以△ACN ≌△ABM ,④正确;因为∠EAB =∠FAC ,所以∠EAB -∠CAB =∠FAC -∠CAB ,即∠EAM =∠FAN ,③正确;在△EAM 和△FAN 中,∠EAM =∠FAN ,AE =AF ,∠E =∠F =90°,所以△EAM ≌△FAN . 所以A EF B CD M NEM =FN ,①正确;由已知条件不能判断出CD =DN .故正确的有3个,应选C.点评:本题主要考查三角形全等的判定,求解时应同时从题设条件和图形出发,寻求三角形全等的条件,准确判定.考点三 运用三角形全等证明线段(或角)相等例5 (2010年呼和浩特)如图4,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,AD =CB ,AE =CF .求证BE =DF .分析:要证明的两条线段BE 和 DF 分别为△CBE 和△ADF 中的边,可以考虑通过证明△ADF ≌△CBE 来解决.证明:∵ AD ∥BC ,∴ ∠A =∠C .∵ AE =FC , ∴ AF =CE .在△ADF 和△CBE 中,AD =CB ,∠A =∠C , AF =CE , ∴ △ADF ≌△CBE . ∴ BE =DF . 点评:如果要证明的两条线段分别是两个三角形的边时,通常可以尝试通过三角形全等进行证明.例6 (2010年北京,改编)如图5,点A ,B ,C ,D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,EC =BF ,AB =DC .求证∠ACE =∠DBF .分析:要使∠ACE =∠DBF ,只要Rt △EAC ≌Rt △FDB 即可,两个三角形显然满足“HL ”.证明:∵ AB =DC , ∴ AC =DB .∵ EA ⊥AD ,FD ⊥AD , ∴ ∠A=∠D=90°.在Rt △EAC 和Rt △FDB 中,EC =FB ,AC =DB , ∴ Rt △EAC ≌Rt △FDB . ∴ ∠ACE =∠DBF .点评:注意“HL ”只适用于直角三角形,而“SSS 、SAS 、ASA 、AAS ”适用于所有的三角形.考点四 三角形全等的实际应用例7 (2010年广安)某学校花台上有一块形如图6所示的三角形ABC 地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,现只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.解析:本题是要利用尺子和量角器测量得到的数据作一个三角形与△ABC 全等,根据全等三角形的判定可以有多种测量方案. 如:⑴用量角器分别量出∠A 、∠B 的大小;⑵用尺子量出AB 的长,根据这三个数据,按照原来的位置关系加工地砖.DOBA 点评:本题是一道方案设计问题,主要考查运用三角形全等解决实际问题的能力,具有一定的开放性,主要依据“SAS 、ASA 、AAS 、SSS ”设计测量方案.考点五 角的平分线的性质例8 有下列说法:①角的平分线上任意一点到这个角两边的距离相等;②到一个角两边距离相等的点在这个角的平分线上;③三角形三条角平分线的交点到三个顶点的距离相等;④三角形三条角平分线的交点到三边的距离相等.其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个解析:由角的平分线的性质可知①②④正确.故选C.点评:解题时要注意用角的平分线的性质,不要总是用全等去证明.例9 (2010年曲靖)如图7,在Rt△ABC 中, ∠C =90°,若BC =10,AD 平分∠BAC 交BC 于点D ,且BD ︰CD =3︰2,则点D 到线段AB 的距离为_________. 解析:要求点D 到AB 的距离,过点D 作DE ⊥AB 于点E ,线段DE 长度即为所求. 因为AD 平分∠BAC ,所以DE =CD . 因为BD ︰CD =3︰2,所以4105252=⨯==BC CD .故DE =CD =4. 点评:解决本题的而关键是运用角的平分线的性质把求点D 到线段AB 的距离转化为求线段CD 的长度.误区点拨误区一 对“对应”二字理解不深、不透例1 已知两个直角三角形中,有一锐角相等,又有一边相等,说明这两个三角形是否全等.错解:这两个三角形全等.剖析:对全等三角形判定定理中的“对应边相等”没有理解,错把边相等当成对应边相等.正解:这两个三角形不一定全等,如图1,在Rt △ABC 与Rt △EDC 中,CD =AB ,∠1=∠2,∠C =∠C =90°,显然△ABC 与△EDC 不全等.误区二 臆造全等的判定方法例2 如图2,AC 和BD 相交点于O ,且C D ∠=∠, BC AD =.求证△DAB ≌△CBA . 错解:在△DAB 和△CBA 中,AD =BC ,AB =BA ,∠D =∠C ,所以△DAB ≌△CBA .剖析:“SSA ”不能判定三角形全等,属于臆造三角形全等的判定方法导致错误. 正解:在△ODA 和△OCB 中,∠D =∠C ,∠AOD =∠BOC ,AD =BC ,所以△ODA ≌△OCB . 所以OD =OC ,OA =OB .所以OD +OB =OC +OA ,即BD =AC .在△DAB 和△CBA 中,AD =BC ,∠D =∠C ,BD =AC ,所以△DAB ≌△CBA . 误区三 忽视图形的多种情况例3 已知△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC =A ′C ′,若AD ,A ′D ′分别是BC ,B ′C ′边上的高,且AD =A ′D ′.问△ABC 与△A ′B ′C ′是否全等?如果全等,给出证明;如果不全等,请举出反例.错解:这两个三角形全等.证明如下:如图3,在Rt △ABD 和Rt △A ′B ′D ′中,因为E DCBAB DAB =A ′B ′,AD =A ′D ′,所以Rt △ABD ≌Rt △A ′B ′D ′. 所以BD =B ′D ′. 同理可得DC =D ′C ′,所以BC =B ′C ′.在△ABC 和△A ′B ′C ′中,因为AB =A ′B ′,AC =A ′C ′,BC =B ′C ′,所以△ABC ≌△A ′B ′C ′.剖析:这两个三角形不一定全等.当这两个三角形均为钝角(或锐角)三角形时全等;若一个是锐角三角形,一个是钝角三角形时就不可能全等.正解:这两个三角形不一定全等.如图4,虽有BD =B ′D ′,DC =D ′C ′,但BC ≠B ′C ′,因此这两个三角形不全等.跟踪训练1.如果NMQ ∆∆≌MNP ,且8cm MN =,7cm PN =,6cm PM =,则MQ 的长为 ( )A .cm 8B .cm 7C .cm 6D .cm 52.如图1,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△ 的是 ( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图2,BOP CPO ∠=∠,PC ∥OA ,4=PD ,则点P 到OB的距离是 ( )A .2B .3C .4D .5A B CD图1PODCB AA ′B ′C ′D ′ABC D图3A BC D图4A ′B ′D ′4.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是 ( )A .SASB .ASAC .AASD .SSS5.如果△ABC ≌△DEF ,△DEF 周长是32 cm ,DE=9cm ,EF=13 cm ,∠E=∠B , 则AC=____ cm.6.如图3,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 .(写出一个即可)7.如图4,ABE △和ACD △是ABC △分别沿着150BAC ∠=,则θ∠的度数是 .8.如图5,在Rt △ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E .求证A D=BC .9. 如图6,在ABC ∆中,︒=∠90ACB ,BC AC =,CE BE ⊥,CE AD ⊥,垂足分别为E ,D ,且cm AD 5=,cm DE 3=,求BE 的长度.10. 如图7,正方形网格中有一个ABC △,请你在方格内画出满足条件1111A B AB BC BC ==,,1A A ∠=∠的所有的111A B C △,(形状相同算一个),并判断111A B C △与ABC △是否一定全等?你能够得到什么结ACE B D 图3CDA EBθ图4BA C图7论?跟踪训练参考答案1.B2.C3.C4.D5. 106.答案不唯一,如AC AE =或D B ∠=∠等 7.︒60 8.证明:在Rt △ABC 和Rt △BAD 中,AB =BA ,AC =BD , ∴ Rt △ABC ≌Rt △BAD . ∴ A D=BC .9.解:∵ ︒=∠90ACB , ∴ ︒=∠+∠90BCE ACD . ∵ CE BE ⊥,CE AD ⊥,∴ ︒=∠=∠90CEB ADC ,︒=∠+∠90CAD ACD . ∴ ∠CAD =∠BCE . ∵ BC AC =,∴ ACD ∆≌CBE ∆.∴ cm CE AD 5==,BE CD =. ∵ )(235cm DE CE CD =-=-=. ∴ cm BE 2=. 10.解:如图所示:ABC △与111A B C △不一定全等.结论:由两边及其中一边的对角对应相等的两个三角形不一定全等.BACB 1A 1C 1C 1B 1A 1。
第12章全等三角形一.选择题(共10小题)1.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个2.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是120°,那么在△ABC中与这个120°的角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C3.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.54.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AC=BC D.∠D=∠B5.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F 6.如图,AB⊥AC于A,BD⊥CD于D,若AC=DB,则下列结论中不正确的是()A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8 B.5 C.3 D.28.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是()A.1个B.2个C.3个D.4个9.如图,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O点,则下列结论:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正确的有()A.1个B.2个C.3个D.4个10.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS二.填空题(共6小题)11.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF=cm.12.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.13.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.14.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=.15.如图,AB=CD,AD=BC,AC与BD相交于O点,则图中有全等三角形对.16.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.三.解答题(共4小题)17.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.18.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.19.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.20.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.参考答案与试题解析一.选择题(共10小题)1.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个【分析】分别利用全等图形的概念以及全等三角形的判定方法进而判断得出即可.【解答】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,可判断全等;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.2.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是120°,那么在△ABC中与这个120°的角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是120°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于120°,∴在△ABC中与这个120°的角对应相等的角是∠A.故选:A.3.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC﹣AE=3,故选:B.4.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AC=BC D.∠D=∠B【分析】直接利用全等三角形的性质得出对应边以及对应角相等进而得出答案.【解答】解:∵△ABC≌△CDA,∴∠1=∠2,∠B=∠D,AC=CA,故AC=BC错误,符合题意.故选:C.5.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F 【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:C.6.如图,AB⊥AC于A,BD⊥CD于D,若AC=DB,则下列结论中不正确的是()A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:∵AB⊥AC于A,BD⊥CD于D∴∠A=∠D=90°(A正确)又∵AC=DB,BC=BC∴△ABC≌△DCB∴∠ABC=∠DCB(B正确)∴AB=CD又∵∠AOB=∠COD∴△AOB≌△DOC∴OA=OD(D正确)C中OD、OB不是对应边,不相等.故选:C.7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8 B.5 C.3 D.2【分析】根据已知条件,观察图形得∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,然后证△AEC≌△CDB后求解.【解答】解:∵∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,∴∠CAE+∠ACD=∠ACD+∠BCD,∴∠CAE=∠BCD,又∵∠AEC=∠CDB=90°,AC=BC,∴△AEC≌△CDB.∴CE=BD=2,CD=AE=5,∴ED=CD﹣CE=5﹣2=3(cm).故选:C.8.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是()A.1个B.2个C.3个D.4个【分析】①根据角平分线的性质得出结论:DE=CD;②证明△ACD≌△AED,得AD平分∠CDE;③由四边形的内角和为360°得∠CDE+∠BAC=180°,再由平角的定义可得结论是正确的;④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出结论是正确的.【解答】解:①∵∠C=90°,AD平分∠BAC,DE⊥AB,∴DE=CD;所以此选项结论正确;②∵DE=CD,AD=AD,∠ACD=∠AED=90°,∴△ACD≌△AED,∴∠ADC=∠ADE,∴AD平分∠CDE,所以此选项结论正确;③∵∠ACD=∠AED=90°,∴∠CDE+∠BAC=360°﹣90°﹣90°=180°,∵∠BDE+∠CDE=180°,∴∠BAC=∠BDE,所以此选项结论正确;∴AC=AE,∵AB=AE+BE,∴BE+AC=AB,所以此选项结论正确;本题正确的结论有4个,故选D.9.如图,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O点,则下列结论:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正确的有()A.1个B.2个C.3个D.4个【分析】如图先证明△ABE≌△AFC,得到BE=CF,S△ABE=S△AFC,得到AP=AQ,利用角平分线的判定定理得AO平分∠EOF,再利用“8字型”证明∠CON=∠CAE=60°,由此可以解决问题.【解答】解:∵△ABF和△ACE是等边三角形,∴AB=AF,AC=AE,∠FAB=∠EAC=60°,∴∠FAB+∠BAC=∠EAC+∠BAC,即∠FAC=∠BAE,在△ABE与△AFC中,,∴△ABE≌△AFC(SAS),∴BE=FC,故①正确,∠AEB=∠ACF,∵∠EAN+∠ANE+∠AEB=180°,∠CON+∠CNO+∠ACF=180°,∠ANE=∠CNO∴∠CON=∠CAE=60°=∠MOB,∴∠BOC=180°﹣∠CON=120°,故④正确,连AO,过A分别作AP⊥CF与P,AM⊥BE于Q,如图,∴S△ABE=S△AFC,∴•CF•AP=•BE•AQ,而CF=BE,∴AP=AQ,∴OA平分∠FOE,所以③正确,∵∠AMO=∠MOB+∠ABE=60°+∠ABE,∠ANO=∠CON+∠ACF=60°+∠ACF,显然∠ABE与∠ACF不一定相等,∴∠AMO与∠ANO不一定相等,故②错误,综上所述正确的有:①③④.故选:C.10.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.二.填空题(共6小题)11.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= 6cm.【分析】由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质有AF=4AD+4BC=4×0.5+4×1=6cm.【解答】解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6cm.12.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为225°.【分析】根据正方形的性质可得出∠3=45°,根据长方形的性质即可得出相等的边,由此可得出全等的三角形,进而得出∠1与∠5互余、∠2与∠4互余,再将其代入∠1+∠2+∠3+∠4+∠5中即可得出结论.【解答】解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.13.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35 °.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.14.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=67°.【分析】由三角形全等可知两全等三角形对应角相等,要根据条件得到对应角,即可求出∠α的值.【解答】解:∵两个三角形全等,长度为3的边是对应边,∴长度为3的边对的角是对应角,∴∠α=67°.15.如图,AB=CD,AD=BC,AC与BD相交于O点,则图中有全等三角形 4 对.【分析】利用全等三角形的判定及性质做题,做题时,从已知开始结合全等的判定方法由易到难逐个找寻,要不重不漏.【解答】解:∵AB=CD,AD=BC,又BD=DB,∴△ABD≌△CDB,进而可得△ADC≌△ABC,△AOD≌△BOC,△ABO≌△CDO,共4对.故答案为4.16.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.三.解答题(共4小题)17.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.【分析】根据全等三角形对应边相等可得OB=OD,全等三角形对应角相等可得∠ABO=∠D,再根据等边对等角求出∠OBD=∠D,然后求出∠ABC,再根据两直线平行,内错角相等解答即可.【解答】解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∴∠A=∠ABC=30°.18.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.19.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).20.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.【分析】利用“角边角”证明Rt△OAB和Rt△OCD全等,根据全等三角形对应边相等可得AB=DC,从而得解.【解答】解:∵OC=35cm,墙壁厚OA=35cm,∴OC=OA,∵墙体是垂直的,∴∠OAB=90°且CD⊥OC,∴∠OAB=∠OCD=90°,在Rt△OAB和Rt△OCD中,,∴Rt△OAB≌Rt△OCD(ASA),∴DC=AB,∵DC=20cm,∴AB=20cm,∴钻头正好从B点处打出.。
第12章全等三角形一.选择题1.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D2.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS3.下列画图语句中,正确的是()A.画射线OP=3 cm B.画出A、B两点的距离C.画出A、B两点的中点D.连结A、B两点4.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED6.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 7.在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=5,则△ABD的面积为()A.2.5B.5C.10D.208.在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点9.如图,点B,E,C,F在同一条直线上,已知AB=DE,AC=DF,添加下列条件还不能判定△ABC≌△DEF的是()A.∠ABC=∠DEF B.∠A=∠D C.BE=CF D.BC=EF10.如图,在△ABC中,AD、BE分别为BC、AC边上的高,AD=BD,AD、BE相交于点F,下列结论:①BF=AC;②S△ABF:S△AFC=BD:CD;③∠F AE=∠FCE;④∠DCF =45°.正确的是()A.①③④B.①②④C.①②D.①②③④二.填空题11.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.12.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.13.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.14.判定两直角三角形全等的各种条件:(1)一锐角和一边对应相等(2)两边对应相等(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是.15.在△ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则△ABC能够唯一确定的是(填序号).16.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4=.17.作图题的书写步骤是、、,而且要画出和,保留.18.如图,△ABC中,AB=2.5cm,AC=6cm,BC=6.5cm,∠ABC与∠ACB的角平分线相交于点P,过点P作PD⊥BC,垂足为点D,则线段PD的长为cm.三.解答题19.如图,点E在AB上,∠A=∠B=∠CED=90°,CE=ED.求证:△ACE≌△BED.20.如图,在△ABC中,∠CAB=∠CBA,AD⊥BC于点D,BE⊥AC于点E.求证:AD=BE.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.22.如图,AB=BC,AB⊥BC于B,FC⊥BC于C,E为BC上一点,BE=FC,请探求AE 与BF的关系,并说明理由.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm 求:(1)∠1的度数(2)AC的长25.如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.26.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.参考答案一.选择题1.C.2.C.3.D.4.D.5.B.6.A.7.B.8.D.9.A.10.B.二.填空题11.100°.12.135.13.2.14.(1)和(2).15.①③④.16.180°.17.已知、求作、作法,图形,结论,作图痕迹.18.1.三.解答题19.证明:∵∠A=∠B=∠CED=90°,∴∠C+∠CEA=90°,∠CEA+∠DEB=90°,∴∠C=∠DEB,在△ACE和△BED中,∵,∴△ACE≌△BED(AAS).20.证明:∵∠CAB=∠CBA,∴CA=CB.∵AD⊥BC于点D,BE⊥AC于点E,∴∠ADC=∠BEC=90°,∵∠ACD=∠BCE,∴△ADC≌△BEC(AAS).∴AD=BE.21.证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE和Rt△CDF是直角三角形.,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.22.解:AE⊥BF且AE=BF.理由:∵AB⊥BC于B,FC⊥BC于C,∴∠ABE=∠BCF=90°.∵AB=BC,BE=FC,∴△ABE≌△BCF.∴AE=BF,∠A=∠FBC,∠AEB=∠F.∵∠A+∠AEB=90°,∴∠FBC+AEB=90°.∴AE⊥BF.∴AE⊥BF且AE=BF.23.证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.24.解:(1)∵△ADF≌△BCE,∠F=28°,∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE,BC=5cm,∴AD=BC=5cm,又CD=1cm,∴AC=AD+CD=6cm.25.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=526.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.。
第十二单单元评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.如图,下列条件中,不能证明△ABC≌△DCB的是( )A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠DD.AB=DC,∠A=∠D【解析】选 D.根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB;B.由“SAS”可以判定△ABC≌△DCB;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故A,B,C项不符合题意;D.由“SSA”不能判定△ABC≌△DCB,故本选项符合题意.2.(2017·阜阳期末)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE ⊥AB于点E,且AB=6cm,则△DEB的周长是( )A.6cmB.4cmC.10cmD.以上都不对【解析】选A.∴∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于点D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.3.如图,已知AC=DB,AO=DO,CD=100m,则A,B两点间的距离( )A.大于100 mB.等于100 mC.小于100 mD.无法确定【解析】选B.因为AC=DB,AO=DO,所以AC-AO=DB-DO,即OC=OB.又因为AO=DO,∠AOB=∠DOC,所以△AOB≌△DOC,所以AB=DC=100m.4.如图,在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等( )A.∠A=∠DFEB.BF=CFC.DF∥ACD.∠C=∠EDF【解析】选A.∠A与△CFE没关系,故A错误;BF=CF,F是BC中点,点D,E分别是边AB,AC的中点,∴DF∥AC,DE∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故B正确;点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠CFE=∠DEF,∵DF∥AC,∴∠CEF=∠DFE在△CEF和△DFE中∴△CEF≌△DFE(ASA),故C正确;点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠CFE=∠DEF,∴△CEF≌△DFE(AAS),故D正确.5.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于( )A.1∶1∶1B.1∶2∶3C.2∶3∶4D.3∶4∶5【解析】选C.利用等高不同底的三角形的面积之比就是底之比可知选C.6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【解析】选C.根据全等的判定可知点P2不能构成全等三角形.其余点都符合.7.如图,在△ABC中,∠C=90°,DE⊥AB于点D,BC=BD.如果AC=3cm,那么AE+DE= ( )A.2 cmB.4 cmC.3 cmD.5 cm【解析】选C.在Rt△BCE和Rt△BDE中,BC=BD,BE=BE,∴Rt△BCE≌Rt△BDE(HL),∴ED=EC,∴AE+DE=AE+EC=AC=3cm.二、填空题(每小题5分,共25分)8.(2017·宁德模拟)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=10,AE=4,则CE=__________.【解析】∵∠1=∠2,∠A=∠A,BE=CD,∴△ABE≌△ACD.∴AD=AE=4,AB=AC=10.∴CE=AC-AE=10-4=6.答案:69.如图,在△ABC与△ADC中,已知AD=AB.在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加一个条件可以是________.【解析】添加∠DAC=∠BAC,由“SAS”可得△ABC≌△ADC;添加DC=BC,由“SSS”可得△ABC≌△ADC.答案:∠DAC=∠BAC(或DC=BC,答案不唯一)【变式训练】如图,点B,E,F,C在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要补充的一个条件是________(写出一个即可).【解析】要使△ABF≌△DCE,而已知∠A=∠D,∠B=∠C,若添加BF=CE或AF=DE,可用AAS证明△ABF≌△DCE;若添加AB=CD,可用ASA证明△ABF≌△DCE.答案:AB=CD(答案不唯一)10.(2016·南京中考)如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中正确结论的序号是__________.【解析】由△ABO≌△ADO得:AB=AD,∠AOB=∠AOD=90°,∠BAC=∠DAC,又AC=AC,所以,有△ABC≌△ADC,CB=CD,所以,①②③正确.由已知条件得不到DA=DC,故④不正确.答案:①②③11.如图所示,在Rt△ABC中,∠C=90°,AM是∠CAB的平分线,CM=1.5cm,若AB=6cm,则S2.△AMB=________cm【解析】过点M作MD⊥AB,垂足为D.∵AM是∠CAB的平分线,MC⊥AC,MD⊥AB,∴MD=MC=1.5cm.∴S△AMB=·AB·MD=×6×1.5=4.5(cm2).答案:4.512.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是________.【解析】∵CD平分∠ACB交AB于点D,∴∠DCE=∠DCF,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,在△DEC和△DFC中,∴△DEC≌△DFC(AAS),∴DF=DE=2,∴S△BCD=BC×DF÷2=4×2÷2=4.答案:4三、解答题(共47分)13.(10分)(2016·湘西中考)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC.(2)求证:AD∥BC.【证明】(1)∵点O是线段AB和线段CD的中点,∴OA=OB,OD=OC,∵∠AOD=∠COB,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.14.(10分)(2016·连云港中考)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ADE≌△CBF.(2)若AC与BD相交于点O,求证:AO=CO.【证明】(1)∵AE⊥BD,CF⊥BD,∴∠AED=∠BFC=90°.∵BE=DF,∴BF+EF=EF+DE,∴BF=DE.在Rt△ADE和Rt△CBF中,∴Rt△ADE≌Rt△CBF(HL).(2)连接AC,∵Rt△ADE≌Rt△CBF,∴AE=CF.∵∠AEO=∠CFO=90°,∠AOE=∠COF,∴Rt△AOE≌Rt△COF(AAS),∴AO=CO.15.(13分)如图,点F,B,E,C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.【解析】由前面的已知条件不能证明△ABC≌△DEF.需要再添加条件①.证明:∵BF=CE,∴EF=BC,∵∠ABC=∠DEF,AB=DE,∴△ABC≌△DEF(SAS).添加条件③时,∵AC∥DF,∴∠ACB=∠DFE,∴△ABC≌△DEF(ASA);添加条件②AC=DF;此时是SSA不能证明全等.16.(14分)八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线. (Ⅱ)∠AOB是一个任意角,在边OA,OB上分别取OM=ON,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.【解析】(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件.∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;∴就不能判定OP就是∠AOB的平分线.方案(Ⅱ)可行.证明:在△OPM和△OPN中,∴△OPM≌△OPN(SSS),∴∠AOP=∠BOP.(2)当∠AOB是直角时,此方案可行.∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.∵∠MPN=90°,∴∠AOB=360°―∠OMP―∠ONP―∠MPN=90°.∵PM⊥OA,PN⊥OB,且PM=PN,∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的平分线上).当∠AOB不为直角时,此方案不可行.【变式训练】如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到铁路的图上距离为1cm.在图上标出仓库G 的位置.(比例尺为1∶10000)【解析】如图,(1)作∠NOQ 的平分线,(2)作到MN 的距离是1cm 的平行线,它们的交点为G.。
经过大海的一番磨砺,卵石才变得更加美丽光滑。
1全等三角形专题复习1、全等三角形的性质:对应边相等,对应角相等,对应的高线、中线相等,对应的面积相等 2、全等三角形:题型一 全等三角形的性质1.如图,点E ,F 在线段BC 上,△ABF 与△DCE 全等,点A 与点D ,点B 与点C 是对应顶点,AF 与DE 交于点M ,则∠DCE=( )判定方法 条件注意⑴边边边公理(SSS ) 三边对应相等三边对应相等⑵边角边公理(SAS)两边和它们的夹角对应相等 (“两边夹一角”)必须是两边夹一角,不能是两边对一角⑶角边角公理(ASA) 两角和它们的夹边对应相等 (“两角夹一边”)不能理解为两角及任意一边⑷角角边公理(AAS) 两角和其中一角的对边对应相等 (5)HL (直角三角形) 一条直角边、一条斜边必须在直角三角形中知识梳理A.∠B B.∠A C.∠EMF D.∠AFB2.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E3.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°4.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3B.5C.6D.105.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()经过大海的一番磨砺,卵石才变得更加美丽光滑。
2A.1个B.2个C.3个D.4个6.如图,在△ABC中,D、E分别是AC、AB上的点,在△ADE≌△BDE≌△BDC,则∠A 的度数是()A.15°B.20°C.25°D.30°7.如图,△ABC≌△AEF,那么与∠EAC相等的角是()A.∠ACB B.∠BAF C.∠CAF D.∠AFE8.如图,已知D、E分别是△ABC的边AB、AC上的一点,若△ADE≌△CFE,则下列结论中不正确的是()A.AD=CF B.AB∥CF C.AC⊥DF D.E是AC的中点9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.经过大海的一番磨砺,卵石才变得更加美丽光滑。
第十二章《全等三角形》单元检测B卷一.选择题1.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A.B.C.D.2.下列所给的四组条件,能作出唯一三角形的是()A.AB=4cm,BC=3cm,AC=5cm B.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 4.如图,在AB、AC上各取一点D、E,使得AE=AD,连接CD、BE相交于点O,再连接AO.若∠CAO=∠BAO,则图中全等三角形共有()A.3对B.4对C.5对D.6对5.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC6.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.107.如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm8.如图,△ABC中,AE平分∠BAC的外角,D为AE上一点,若AB=c,AC=b,DB =m,DC=n,则m+n与b+c的大小关系是()A.m+n>b+c B.m+n=b+cC.m+n<b+c D.m+n>b+c或m+n<b+c9.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°10.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可11.已知△ABC内一点P,如果点P到AB、AC两边的距离相等,则点P()A.在BC边的垂直平分线上B.在BC边的高上C.在BC边所对角的平分线上D.在BC边的中线上12.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.其中正确的结论个数有()A.4个B.3个C.2个D.1个二.填空题13.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是.14.如图,在△ABC中,D、E分别是AC,AB上的点,若△ADE≌△BDE≌△BDC,则∠DBC的度数为.15.如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是.16.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②BF=AF;③AC+CD=AB,④AB=BF;⑤AD =2BE.其中正确的结论有.(填写序号)17.如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=.18.如图,点P是∠AOB的角平分线OC上一点,PN⊥OB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为.三.解答题19.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.20.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).21.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.22.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB=CD.(1)△ABF与△CDE全等吗?为什么?(2)求证:EG=FG.23.如图1,CA=CB,CD=CE,∠ACB=∠DCE=α(1)求证:BE=AD;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.参考答案一.选择题1.解:在△ABC中,∠B=180°﹣58°﹣72°=50°,根据“SAS”可判断图甲的三角形与△ABC全等.故选:A.2.解:A、符合三角形的三边关系定理,能作出唯一的三角形,故本选项符合题意;B、不符合三角形的三边关系定理,不能作出三角形,故本选项不符合题意;C、能作出多个等边三角形,故本选项不符合题意;D、能作出多个直角三角形,故本选项不符合题意;故选:A.3.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.解:∵,∴△AEO≌△ADO,∴OE=OD,∠ADO=∠AEO,∴∠BDO=∠CEO,又∵∠BOD=∠COE,∴△CEO≌△BDO,∴∠B=∠C,CE=BD,∴AC=AB,∴△AOC≌△AOB,△ADC≌△AEB.∴图中全等三角形共4对.故选:B.5.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.6.解:∵在△ADE和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故选:C.7.解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.8.解:在AM上截取AC′=AC,连接DC′在△ADC与△ADC′∵AC=AC'、∠CAD=∠C'AD、AD为公共边∴△ADC≌△ADC'∴DC=DC'在△BDC'中∵BC'<BD+DC′、BC'=BA+AC′∴BA+AC'<BD+DC′所以∴△ADC≌△ADC′即m+n>b+c故选:A.9.解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选:B.10.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.11.解:∵PE⊥AB,PF⊥AC,PE=PF,∴P在∠BAC的角平分线上,故选:C.12.解:在△ABC与△AEF中,,∴△AEF≌△ABC(SAS),∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:①③④正确.故选:B.二.填空题(共6小题)13.解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:180°14.解:∵△ADE≌△BDE≌△BDC,∴∠A=∠DBE=∠CBD,∠C=∠AED=∠BED,∵∠AED+∠BED=180°,∴∠AED=∠BED=90°=∠C,∵∠C+∠A+∠CBA=180°,∴3∠A=90°,∴∠A=30°,∴∠DBC=∠A=30°,故答案为:30°.15.解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或∠ADC=∠BEC或CE=CD,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或∠ADC=∠BEC或CE=CD.16.解:∵∠ACB=90°,BF⊥AE,∴∠ACB=∠BED=∠BCF=90°,∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,∴∠F=∠BDE,∵∠BDE=∠ADC,∴∠F=∠ADC,∵AC=BC,∴△BCF≌△ACD,∴AD=BF,∴①正确;∵AF>AD,∴BF≠AF②错误;∵△BCF≌△ACD,∴CD=CF,∴AC+CD=AF,∵△BCF≌△ACD,∴CD=CF,∴AC+CD=AF,又∵AB=AF,∴AC+CD=AB.∴③正确;∵BF=AC,AC<AF=AB,∴AB>BF,∴④错误;由△BCF≌△ACD,∴AD=BF,∵AE平分∠BAF,AE⊥BF,∴∠BEA=∠FEA=90°,∠BAE=∠FAE,∵AE=AE,∴△BEA≌△FEA,∴BE=EF,∴⑤正确;故答案为:①③⑤.17.解:∵AB∥FC,∴∠ADE=∠EFC,∵E是DF的中点,∴DE=EF,在△ADE与△CFE中,,∴△ADE≌△CFE,∴AD=CF,∵AB=10,CF=6,∴BD=AB﹣AD=10﹣6=4.故答案为4.18.解:如图:过点P作PE⊥OA于点E,∵OC平分∠AOB,PE⊥OA,PN⊥OB,∴PE=PN,在Rt△OPE和Rt△OPN中,,∴Rt△OPE≌Rt△OPN(HL),∴OE=ON=4,∵OM=3,ON=4,∴MN=ON﹣OM=1;若点D在线段OE上,在Rt△PMN和Rt△PDE中,,∴Rt△PMN≌Rt△PDE(HL)∴DE=MN=1∴OD=OE﹣DE=3若点D在射线EA上,在Rt△PMN和Rt△PDE中,,∴Rt△PMN≌Rt△PDE(HL),∴DE=MN=1,∴OD=OE+DE=5;故答案为:3或5.三.解答题(共6小题)19.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.20.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.21.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.22.(1)解:△ABF与△CDE全等,理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL);(2)证明:∵Rt△ABF≌Rt△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.23.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形。
人教版初二数学上册第十二章重点题型讲解(复习)本章主要内容是三角形全等的判定,它是培养学生逻辑思维、推理的主要途径,为今后的学习奠定基础。
如何运用三角形的全等的判定来判定两个三角形全等,本文通过对一些常见题型进行整理,经过这些问题的分析、解决,对这一问题给予作答,进而达到复习巩固深化本章所学的知识,进一步形成解题能力。
1.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B. 1:3C. 2:3D. 1:42.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折1800形成的,若∠BAC=1500,求∠α的度数。
3.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,求点D的坐标。
4.如图,在△ABC中,∠B=90,ED⊥AB于点D,AD是∠CAB的平分线,且AB=BC,若AB=6,则CD+DE等于()A.4B. 5C. 6D. 75.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS.下列结论:①AS=AR;②QP∥AR;③△BRP≌△CSP。
其中结论正确的序号是()A.①②B.②③C.①③D.①②③6.如图,点M,O,D在一条直线上,A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,则以下结论:①AD+BC=AB; ②与∠CBO互余的角有2个;③∠AOB=900;④点O 是CD的中点,其中正确的是()A.仅①②③B.仅①③④C.仅②③④D仅①②③④.7.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(3,3)处,两直角边分别与坐标轴交于点A和点B,则OA+OB的值为_____________。
8.如图,在△ABC中,点E,F分别是AB,AC边上的点,EF∥BC,点D 在BC边上,连接DE,DF,请你添加一个条件_________,使△BED≌△FDE.9.如图所示,∠E=∠F=900,∠B=∠C,AE=AF,下列结论:①EM=FN; ②CD=DN ; ③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的是________10.如图,MN∥PQ,AB⊥PQ,点A,D在直线MN上,点B,C在直线PQ 上,点E在AB上,AD+BC=7,AD=BE,DE=EC,则AB=____11.如图,A,D,E三点在同一直线上,且△BAD≌△ACD(1)求证:BD=DE+CE(2)问:△ABD满足什么条件时,BD∥CE?12.如图,在△ABC中,AD⊥BC,CE⊥AB垂足分别为D,E,AD,CE分别交于点H,已知EH=EB=3,AE=4,则CH的长是多少13.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F那么,CE=DF吗?14..如图,有一个Rt△ABC,∠C=900,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC上和过点A且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时,△ABC才能和△APQ全等。
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.作者留言:您好!非常感谢!您浏览到此文档。
第12章全等三角形单元测试卷一、选择题(共10小题).1.下列条件能判定△ABC≌△DEF的一组是()A.∠A=∠D,∠B=∠E,∠C=∠FB.AB=DE,BC=EF,∠A=∠DC.∠A=∠D,∠C=∠F,AC=DFD.△ABC的周长等于△DEF的周长2.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A 和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS3.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.两个锐角对应相等C.斜边和一直角边对应相等D.斜边和一锐角对应相等4.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 5.△ABC≌△A′B′C′,其中∠A′=50°,∠B′=70°,则∠C的度数为()A.55°B.60°C.70°D.75°6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B=∠C,③DB=DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个7.如图,D为△ABC边BC上一点,AB=AC,∠BAC=56°,且BF=DC,EC=BD,则∠EDF 等于()A.62°B.56°C.34°D.124°8.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3 B.10 C.12 D.159.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°10.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E,若PE=2.5,则两平行线AD与BC间的距离为()A.3 B.4 C.5 D.6二.填空题11.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.12.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.13.如图,点D在AB上,AC,DF交于点E,AB∥FC,DE=EF,AB=15,CF=8,则BD=.14.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC 的周长为21,OD=4,则△ABC的面积是.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=.三.解答题16.如图,已知EC=AC,∠BCE=∠ACD,∠A=∠E,BC=3.求DC的值.17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法).18.如图,在△ABE和△DCF中,B、E、C、F共线,AB∥CD,AB=CD,BF=CE,求证:AE=DF.19.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.参考答案一.选择题1.下列条件能判定△ABC≌△DEF的一组是()A.∠A=∠D,∠B=∠E,∠C=∠FB.AB=DE,BC=EF,∠A=∠DC.∠A=∠D,∠C=∠F,AC=DFD.△ABC的周长等于△DEF的周长解:A、∠A=∠D,∠B=∠E,∠C=∠F是AAA,不能判定两三角形全等,故选项不符合题意;B、AB=DE,BC=EF,∠A=∠D是SSA,不能判定两三角形全等,故选项不符合题意;C、∠A=∠D,∠C=∠F,AC=DF符合ASA,能判定两三角形全等,故选项符合题意;D、△ABC的周长等于△DEF的周长,三边不可能相等,故选项不符合题意.故选:C.2.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A 和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS解:根据题意可得:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),∴AB=DE,∴依据是SAS,故选:D.3.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.两个锐角对应相等C.斜边和一直角边对应相等D.斜边和一锐角对应相等解:A、根据SAS可以判定三角形全等,本选项不符合题意.B、AA不能判定三角形全等,本选项符合题意.C、根据HL可以判定三角形全等,本选项不符合题意.D、根据AAS可以判定三角形全等,本选项不符合题意.故选:B.4.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选:A.5.△ABC≌△A′B′C′,其中∠A′=50°,∠B′=70°,则∠C的度数为()A.55°B.60°C.70°D.75°解:∵∠A′=50°,∠B′=70°,∴∠C′=180°﹣50°﹣70°=60°,∵△ABC≌△A′B′C′,∴∠C=∠C′=60°,6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B =∠C,③DB=DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.7.如图,D为△ABC边BC上一点,AB=AC,∠BAC=56°,且BF=DC,EC=BD,则∠EDF 等于()A.62°B.56°C.34°D.124°解:∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=(180°﹣56°)=62°,在△BFD和△EDC中,,∴△BFD≌△EDC(SAS),∴∠BFD=∠EDC,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣62°=118°,则∠EDF=180°﹣(∠FDB+∠EDC)=180°﹣118°=62°.8.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3 B.10 C.12 D.15解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC==10,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=15.故选:D.9.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°解:作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中,,∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°﹣140°=40°,故选:A.10.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E,若PE=2.5,则两平行线AD与BC间的距离为()A.3 B.4 C.5 D.6解:过点P作GH⊥AD交AD于G,交BC于H,∵AD∥BC,∴GH⊥BC,∵AP平分∠BAD,PE⊥AB,PG⊥AD,∴PG=PE=2.5,同理可得,PH=PE=2.5,∴GH=PG+PH=5,即两平行线AD与BC间的距离为5,故选:C.二.填空题11.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是7cm.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.12.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.13.如图,点D在AB上,AC,DF交于点E,AB∥FC,DE=EF,AB=15,CF=8,则BD=7.解:∵AB∥FC,∴∠ADE=∠F又∵DE=EF,∠AED=∠CEF,∴△ADE≌△CFE,∴AD=CF,∵AB=15,CF=8,∴BD=AB﹣AD=15﹣8=7.故答案是:7.14.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC 的周长为21,OD=4,则△ABC的面积是42.解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=×AB×4+×AC×4+×BC×4=42.故答案为:42.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=65°.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠ABD=∠2=30°.∵∠3=∠1+∠ABD,∴∠3=35°+30°=65°.故答案为:65°.三.解答题16.如图,已知EC=AC,∠BCE=∠ACD,∠A=∠E,BC=3.求DC的值.解:∵∠BCE=∠ACD,∴∠ACB=∠ECD,在△ACB和△ECD中,,∴△ACB≌△ECD(ASA),∴BC=CD=3.17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法).解:如图,CD为所作;证明:∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.18.如图,在△ABE和△DCF中,B、E、C、F共线,AB∥CD,AB=CD,BF=CE,求证:AE=DF.【解答】证明:∵AB∥CD,∴∠B=∠C,∵BF=CE,∴BF﹣EF=CE﹣EF,即BE=CF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴AE=DF.19.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【解答】证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.20.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
全等三角形复习1、概念:⑴全等形:能够完全重合的两个图形叫全等形。
⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
表示:△ABC ≌△DEF注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
2、三角形全等的判定和性质注意:1、有两个角和一边分别相等的两个三角形不一定全等,如有对应则全等。
2、边边角(SSA )和角角角(AAA)不能判断全等的方法。
3、证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 4、角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。
⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上。
⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
5、解题技巧:1)寻找全等三角形对应边、对应角的规律:(1) 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2) 全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.(3) 有公共边的,公共边一定是对应边.(4) 有公共角的,公共角一定是对应角.(5) 有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)(6) 寻找对应元素的方法1)根据对应顶点找2)根据已知的对应元素寻找3)通过观察,想象图形的运动变化状况,确定对应关系①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图,∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移如图,∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
全等三角形全章复习类型一、全等三角形的性质和判定例题1、问题背景:(1)如图1:在四边形ABCD中,AB =AD, ∠BAD二12O0,∠B=∠ADC=900 .E, F分别是BC, CD 上的点.且∠EAF=600.探究图中线段BE, EF, FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD, ∠B+∠D=18O0 .E, F分别是BC,'CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【变式】如图,已知:AE⊥AB, AD⊥AC, AB=AC, ∠B=∠C,求证:BD = CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:例题2、如图:在四边形ABCD中,AD//CB, AB//CD.求证:∠B=∠D【变式】在△ABC中,AB =AC,求证:∠B=∠C(2).倍长中线法:例题3、己知:在△ABC中,AD为中线.求证:AD<12(AB + AC)【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是()A. 1<x<6B.5<x<7C.2 <X<12 D.无法确定(3).作以角平分线为对称轴的翻折变换构造全等三角形:例题4、在△ABC中,AB>AC.求证:∠B<∠C【变式】如图,已知,∠BAC=9O0,AB=AC, BD是∠ABC的平分线,且CE⊥BD交BD延长线于点E.(1)若AD=1,求DC;(2)求证:BD=2CE.(4).利用截长(或补短)法构造全等三角形:例题5、如图所示,已知△ABC中AB>AC, AD是∠BAC 的平分线,M是AD上任意一点,求证:MB-MC<AB---AC.类型三、全等三角形动态型问题例题6、如图(1), AB⊥BD于点B, ED⊥BD于点D, ,点C是BD上一点.且BC=DE, CD=AB.(1)试判断AC与CE的位置关系,并说明理由;(2)如图(2),若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第(1)问中AC与BE的位置关系还成立吗?(注意字母的变化)[变式]如图(I)△ABC中,BC=AC, △CDE中,CE=CD, 现把两个三角形的C点重合,且使∠BCA=∠ECD,连接BE, AD.求证;BE = AD.若将△DEC绕点C旋转至图(2) (3)所示的情况时,其余条件不变,BE与AD还相等吗?为什么?全等三角形全章复习作业一选择题1.如图所示,若△ABE≌△ACF且AB=5, AE=2, 则EC的长为()A.2B.3C.5D. 2.52.请仔细观察用直尺和圆规作一个角∠A'0'B'等于己知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A'O'B'=∠AOB的依据是()A.SASB. ASAC. AASD. SSS3.如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A. ∠ACBB.∠CAFC.∠BAF D∠EAC4.在下列结论中正确的是()A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C.一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5.如图,点C. D分别在∠AOB的边0A、0B上,若在线段CD上求一点P,使它到OA, OB的距离相等,则P点是()A.线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF; (2) AB=DE, ∠B=∠E, BC=EF(3)∠B=∠E, BC=EF, ∠C=∠F; (4) AB=DE, AC=DF, ∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组 B. 4组7.如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( ) A.相等B.不相等C.互补D.相等或互补8. △ABC中,∠BAC=900,AD⊥B C, AE平分∠BAC, ∠B=2∠C, ∠DAE的度数是A. 450B. 200C.300D. 150二.填空题9.己知△ABC≌△A'B'C',若△ABC的面积为10 cm2,则△A'B'C’的面积为cm2,若△A'B'C'的周长为16cm,则△ABC的周长为cm.10. △ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:11.如图,在△ABC中,∠C=900, ∠B=300, AD平分∠BAC, CD=2cm,则BD的长是_.12.下列说法中:①如果两个三角形可以依据"AAS"来判定全等,那么一定也可以依据“ASA”来判定它们全等:②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是13.如右图,在△ABC中,∠C=900,BD平分∠CBA交AC于点B.若AB=a, CD=b,则△ADB的面积为14.如图,己知AB⊥BD, AB//ED, AB=ED,要说明△ABC≌△EDC,若以"SAS”为依据,还要添加的条件为;若添加条件AC = EC,则可以用公理(或定理)判定全等.15.如图,∠ABC中,H是高AD,BE的交点,且BH = AC,则∠ABC=________16.在△ABC中,∠C=900,AC=BC, AD平分∠BAC, DE⊥AB于E.若AB=20cm,则△DBE的周长为三.解答题17.己知:如图,CB=DE, ∠B=∠E, ∠BAE=∠CAD. 求证:∠ACD= ∠ADC.18.已知:△ABC中,AC土BC, CEIAB于E, AF平分∠CAB交CE于F,过F作FD//BC交AB于D. 求证:AC=AD19.已知:如图,AD平分∠BAC, DE⊥AB于E, DF⊥AC于F,且BD=CD.求证:BE=CF. B20.感受理解如图①△ABC是等边三角形,AD, CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是自主学习事实上,在解决几何线段相等问题中.当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC此时,在ON上截取OB=OA,连接BC, 从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=600, AD、CE分别是∠BAC,∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.。
D C
B
A
第4题
第5题 第6题
第3题
图1E
D
C
B
A
2
1
第9题
厦门五中八年级上数学国庆作业
班级 姓名 座号 成绩
内容:第12章《全等三角形》
一、选择题(每题3分,共18分)
1.给出三个命题:(1)全等三角形对应角相等; (2)全等三角形对应边上的高相等; (3)有两边及其中一边的对角对应相等的两个三角形全等;其中是真命题的为( ) A .(1)(2)(3) B .(1)(2) C .(1)(3) D .(2)(3)
2.如图,将两根钢条AA BB ''、的中点O 连在一起使AA BB ''、可以绕着点O 自由转动就做成了一个 测量工具,则A B ''的长等于内槽宽AB ,那么判定OAB OA B ''△≌△的理由是( ) A. 边角边 B. 角边角 C. 边边边 D. 角角边 3.如图,∠B=∠D=90°,BC=CD ,∠1=40°,则∠2=( )
A .40°
B .50°
C .45°
D .60°
4.如图,Rt△ABC 中,∠C=90°,∠ABC 的平分线BD 交AC 于D ,若AD=5cm ,AC=8cm , 则点D 到AB 的距离DE 是( )
A .5cm
B .4cm
C .3cm
D .2cm
5.如图4,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠; ④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A .4个 B .3个 C .2个 D .1个 6.如图,ΔABC 中,AD 是它的角平分线,AB=6,AC=4,则ACD ABD S S ∆∆:为( ) A .1 B .2:1 C .3:2 D .2:3
二、填空题(每空3分,共39分)
7.如图,沿直线AC 对折,△ABC 与△AD C 重合,则△ABC≌ ,AB 的对应边是 , BC 的对应边是 ,∠BCA 的对应角是 .
8.如图,已知ΔABC ≌ΔDCB .
若∠D =74°,∠DBC =38°,则∠A =__ ___°,∠ABC =___ __°. 9.如图,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C , 下列结论,正确的是 (填序号). ①
AB =CD ②∠BAE =∠CAD ③BE =DC ④AD =
DE
第7题 第8题
第2题
第11题
第12题
第13题
10.如图,已知AD =BC ,根据“SSS”,还需要一个条件 ,可证明ΔABC ≌ΔBAD ;
根据“SAS”,还需要一个条件 ,可证明ΔABC≌ΔBAD . 11.如图,给出下列三个条件:①AB=AC ;② BE=CD ;③∠B=∠C . 以其中两个作为命题的题设,以“△ABE≌△ACD”作为命题的结论.
(1)写出一个真命题...: ; (2)写出一个假命题...: . 12.一张长方形纸片ABCD (AD ∥BC ,AB ∥CD ,∠A=900
),沿着对角线BD 折叠.折叠后的图形 如图,BC /交AD 于点F ,已知∠ABF=200
,则∠ADB= 度.
13.如图,AD 是△ABC 中BC 边上的中线,若AB=2,AC=4,则AD 的取值范围是 .
三、解答题(63分)
14.(6分)尺规作图(保留作图痕迹):
(1)作出∠AOB 的角平分线OC ; (2)作出线段AB 的垂直平分线CD ;
15.(6分)如图,A B 、两点分别位于一个池塘的两侧,池塘西边有一座假山D ,在DB 的中点C 处 有一个雕塑,张倩从点A 出发,沿直线AC 一直向前经过点C 走到点E ,并使CE CA =,然后她
测量点E 到假山D 的距离,则DE 的长度就是A B 、两点之间的距离.你能说明小倩这样做的根据吗?
16.(8分)(1)如图,AB=AC , AE =AD .求证△ABD≌△ACE. (2)如图,AB=AC ,∠B=∠C.求证:BE =DC .
17.(8分)如图,点B E C F 、、、在同一直线上,AB DE =,ABC DEF ∠=∠,BE CF =,
求证:AC ∥DF . E C B
A
D D
A O
B
A
A
E
D
C
B
/
F
C
D
C
B
A
D
C
B
A
O
D C
B
A
第10题
F D
E C
B
A
18.(10分)已知AB=AC ,BP=CP ,PD⊥AB,PE⊥AC,垂足分别为D ,E . 求证:PE=PD .
19.(10分)如图,BE=CF ,DE⊥AB 的延长线于点E ,DF⊥AC 于点F ,且DB=DC ,
求证:AD 是∠EAC 的平分线.
20.(10分)如图,在△ABC 中, D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F , (1)若AB=AC ,求证:DE=DF ;
(2)若DE=DF ,求证:AD 是线段 BC 的垂直平分线.
5. (5分) 在平面直角坐标系xoy 中,有一等腰直角△ABC,∠ACB=90°,AC=BC.
P
A
D
C
B E
B D
C
E
F
A
(1)如图1,若OA=2,OC=4,BD⊥x轴,垂足为D,求点B的坐标;
(2)如图2,若点A(0,2),点B(4,0),求点C的坐标.
x。