两个重要极限
- 格式:ppt
- 大小:2.52 MB
- 文档页数:65
两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。
当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。
即111sin 222x x <<tgx ,sinx<x<tgx 。
除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。
(1) 由偶函数性质,上式对02x π-<<时也成立。
故(1)式对一切满足不等式0||2x π<<的x 都成立。
由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。
函数f(x)=sin x x的图象如图(b )所示。
2.证明:1lim(1)n n n →∞+存在。
证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。
(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。
由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。
再令a=1,b=1+12n代入(1)。
由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。
不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。
联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。
于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。
两个重要极限公式
两个重要极限公式:极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。
1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。
特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。
2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x →∞时,(1+1/x)^x的极限等于e;或当x →0 时,(1+x)^(1/x)的极限等于e。
极限的求法
连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
利用恒等变形消去零因子(针对于0/0型)
利用无穷大与无穷小的关系求极限。
利用无穷小的性质求极限。
利用等价无穷小替换求极限,可以将原式化简计算。
利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
第三章函数极限4 两个重要的极限一、证明:limx→0sin xx=1.证:∵sinx<x<tanx(0<x<π2),∴1<xsin x<1cos x(0<x<π2),∴cosx<sin xx<1(0<x<π2),又cos-x=cosx,sin−x−x =sin xx,∴对0<|x|<π2,有cosx<sin xx<1.由limx→0cosx=1,根据极限的迫敛性,limx→0sin xx=1.例1:求limx→πsin x π−x.解:令t=π-x,则sinx=sin(π-t)=sint,且当x→π时,t→0,∴limx→πsin xπ−x=limt→0sin tt=1.例2:求limx→01−cos xx2.解:limx→01−cos xx2=limx2→012sin x2x22=12,二、证明limx→∞1+1xx=e.证:设f(x)=1+1n+1n, g(x)=1+1nn+1, n≤x<n+1, n=1,2,…,则f(x)递增且有上界,g(x)递减且有下界,∴limx→+∞f x与limx→+∞g x都存在,取{x n}={n},由归结原则得lim x→+∞f x=limn→+∞1+1n+1n=e,limx→+∞g x=limn→+∞1+1nn+1=e,又1+1n+1<1+1x≤1+1n,则1+1n+1n<1+1xx<1+1nn+1,根据迫敛性定理得limx→+∞1+1xx= e.设x=-y,则1+1x x=1−1y−y=1+1y−1y,且当x→-∞,y→+∞,从而有lim x→−∞1+1xx=limy→+∞1+1y−1y−1·1+1y−1=e.∴limx→∞1+1xx=e.注:e的另一种形式:lima→01+a1a=e.证:令a=1x ,则当a→0时,1x→∞,∴lima→01+a1a=lim1x→∞1+1xx=e.例3:求limx→01+2x1x.解:limx→01+2x1x=lim12x→∞1+2x12x2=e2.例4:求limx→01−x1x.解:limx→01−x1x=lim−1x→∞1[1+(−x)]−1x=1e.例5:求limn→∞1+1n−1n2n.解:1+1n −1n2n<1+1nn→e(n→∞),又当n>1时有1+1n −1n2n=1+n−1n2n2n−1−nn−1≥1+n−1n2n2n−1−2→e(n→∞,即n−1n2→0).由迫敛性定理得:limn→∞1+1n−1n2n=e.习题1、求下列极限: (1)lim x →0sin 2x x;(2)limx →0sin x 3 (sin x)2;(3)lim x →π2cos xx −π2;(4)limx →0tan x x;(5)limx →0tan x −sin xx 3;(6)limx →0arctan xx;(7)lim x →+∞x sin 1x;(8)limx →asin 2 x −sin 2 ax −a;(9)limx → x +1−1(10)limx →0 1−cos x 21−cos x.解:(1)limx →0sin 2x x=lim2x →02sin 2x 2x=2;(2)lim x →0sin x 3(sin x)2=limx →0 x 3sin x 3x 3(sin x )2=limx 3→0sin x 3x3·lim x 2→0xsin x 2·lim x →0x =0; (3)lim x →π2cos x x −π2=lim x −π2→0−sin x −π2x −π2= -1;(4)limx →0tan x x=limx →0sin x x·limx →01cos x=1;(5)lim x →0tan x −sin xx 3=limx →0sinx 1cos x −1x 3=limx →0sin x·1−cos xcos x x 3=limx →02sinx 2cos x 2·2 sin x 2 2cos xx3=limx →04 sinx 2 3·cos x2cos x x3=limx →0sin x 2 3·cos x2cos x 2 x 23=lim x2→0sinx 2x 23·lim x 2→0cosx 22lim x →0cos x =12;(6)令arctan x=y ,则x=tany ,且x →0时,y →0, ∴limx →0arctan xx=limy →0ytan y =limy →0cos ysin y y=1;(7)lim x →+∞x sin 1x =lim 1x→0sin1x1x =1;(8)lim x →asin 2 x −sin 2 ax −a =limx →a sin x −sin a (sin x+sin a)x −a=limx →a2cosx +a 2 sin x −a2x −a·2sin a=limx −a2→0sinx −a2x −a 2·cos a ·2sin a= sin2a ;(9)limx →x +1−1lim x →0( x+1+1)sin 4xx=8lim4x →0sin 4x 4x=8;(10)lim x →0 1−cos x 21−cos x=limx →0 2sin x 222 sin x 22= 2limx →0sinx 22 x 22 sinx 2x 22= 2.2、求下列极限:(1)limx→∞1−2x−x;(2)limx→01+ax1x(a为给定实数);(3)limx→01+tan x cot x;(4)limx→01+x1−x1x;(5)limx→+∞3x+23x−12x−1;(6)limx→+∞1+αxβx(α,β为给定实数)解:(1)limx→∞1−2x−x=lim−x2→∞1+1−x2−x22=e2;(2)limx→01+ax1x=lima x→01+ax1axa=e a;(3)limx→01+tan x cot x=limtan x→01+tan x1tan x=e;(4)limx→01+x1−x1x=limx→01+x1x1−x1x=limx→01+x1xlim−x→0[1+−x]1−x−1=e2;(5)limx→+∞3x+23x−12x−1=limx→+∞1+33x−16x−33=lim33x−1→0+1+33x−123x−1−13=lim33x−1→0+1+33x−123x−13lim33x−1→0+1+33x−113=e2;(6)limx→+∞1+αxβx=limx→+∞1+αxαβxα=limαx→0+1+αxxααβ=eαβ.3、证明:limx→0limn→∞cos xcos x2cos x22…cos x2n=1.证:∵cos xcos x2cos x22…cos x2n=2n+1cos xcos x2cos x22…cos x2nsin x2n2n+1sin x2n=sin 2x2n+1sin x2n=sin 2x2xsin x2nx2n=x2nsin x2n·sin 2x2x;∴当x≠0时,limn→∞ cos xcos x2cos x22…cos x2n=limx2n→0x2nsin x2n·sin 2x2x=sin 2x2x;lim x→0limn→∞cos xcos x2cos x22…cos x2n=lim2x→0sin 2x2x=1.当x=0时,cos xcos x2cos x22…cos x2n=1,∴limx→0limn→∞cos xcos x2cos x22…cos x2n=1.4、利用归结原则计算下列极限:(1)limn→∞n sinπn;(2)limn→∞1+1n+1n2n.解:(1)∵limx→∞x sinπx=limx→∞sinπxπx·x=limπx→0sinπxπx·limx→∞x=0根据归结原则,limn→∞n sinπn=0.(2)∵当x>0时,1+1x +1x2x>1+1xx→e(x→+∞),又1+1x +1x2x=1+x+1x2x2x+1+xx+1<1+x+1x2x2x+1→e(x→+∞,即x+1x2→0),∴limx→+∞1+1x+1x2x=e根据归结原则,limn→∞1+1n+1n2n=e.。
极限的两个重要极限公式极限是数学中的一个重要概念,它描述了函数在无穷接近某一点时的趋势。
在微积分中,极限是一个基础概念,它被广泛应用于求导、积分和微分方程等数学领域。
在本文中,我们将介绍两个极限公式,它们是极限理论中的重要公式。
一、夹逼定理夹逼定理是极限理论中的一个重要定理,它描述了当一个函数在某一点的两侧趋近于一个相同的极限时,该函数在该点的极限也将趋近于该极限。
更具体地说,夹逼定理可以用以下公式表示:设函数f(x)、g(x)和h(x)在区间[a, b]上有定义,且对于该区间内的任意x,都有g(x) ≤ f(x) ≤ h(x)。
如果lim g(x) = lim h(x) = L,那么lim f(x) = L。
这个定理的证明比较简单,我们可以通过使用不等式来证明。
具体来说,我们可以使用以下不等式:g(x) ≤ f(x) ≤ h(x)由于lim g(x) = lim h(x) = L,所以当x趋近于某一点时,g(x)和h(x)都会趋近于L。
因此,我们可以把上述不等式两侧同时取极限,得到:lim g(x) ≤ lim f(x) ≤ lim h(x)由于lim g(x) = lim h(x) = L,所以L ≤ lim f(x) ≤ L这意味着当x趋近于某一点时,f(x)的极限将趋近于L。
因此,我们可以得出结论:当一个函数在某一点的两侧趋近于一个相同的极限时,该函数在该点的极限也将趋近于该极限。
二、洛必达法则洛必达法则是极限理论中的另一个重要定理,它描述了当一个函数在某一点上的极限不存在时,我们可以通过求导数的极限来确定该函数的极限。
更具体地说,洛必达法则可以用以下公式表示:设函数f(x)和g(x)在某一点x0的某个去心邻域内有定义,且在该点上f(x0) = g(x0) = 0。
如果lim f'(x)/g'(x)存在(其中f'(x)和g'(x)分别表示f(x)和g(x)在点x处的导数),那么lim f(x)/g(x)也存在,且lim f(x)/g(x) = lim f'(x)/g'(x)。
两个重要极限的应用探讨两个重要极限的应用探讨一、引言微积分学是现代数学的重要组成部分,而极限理论则是微积分学的理论基础。
在极限理论中,两个重要极限扮演着至关重要的角色。
它们不仅是微积分学的基础,而且在解决实际问题中也具有广泛的应用。
本文将对这两个重要极限的应用进行深入探讨。
二、两个重要极限的概述第一个重要极限是:当x趋近于0时,sinx/x的极限为1。
这个极限可以用几何解释和代数解释两种方法来理解。
几何解释是将sinx表示为一个三角形的斜边,x表示三角形的底边,当底边无限缩短时,斜边与底边的比值趋近于1。
代数解释则是利用泰勒级数展开sinx,得到sinx/x的极限为1。
第二个重要极限是:当x趋近于无穷大时,(1+1/x)^x的极限为e。
这个极限可以通过二项式定理和夹逼定理来证明。
二项式定理将(1+1/x)^x展开为多项式,夹逼定理则证明了当x趋近于无穷大时,多项式的极限为e。
三、两个重要极限的应用1.三角函数的应用第一个重要极限在三角函数中有广泛的应用。
例如,在求解三角函数的极限问题时,可以利用第一个重要极限将问题转化为求sinx或cosx的极限。
此外,在求解三角函数的导数时,也需要利用第一个重要极限。
例如,在求解sinx的导数时,可以将sinx表示为(sinx/x)x,然后利用第一个重要极限和导数的定义求解。
2.复利计算的应用第二个重要极限在复利计算中有广泛的应用。
例如,在求解连续复利的极限问题时,可以利用第二个重要极限将问题转化为求(1+r/n)^(nt)的极限,其中r为年利率,n为每年计息次数,t为投资时间。
此外,在求解连续复利的导数时,也需要利用第二个重要极限。
例如,在求解连续复利函数e^(rt)的导数时,可以利用第二个重要极限和导数的定义求解。
3.经济学中的应用两个重要极限在经济学中也有广泛的应用。
例如,在求解经济增长率和折现率的问题时,可以利用第二个重要极限将问题转化为求(1+r)^(-t)的极限,其中r为折现率,t为时间。