高等数学中的两个重要极限
- 格式:ppt
- 大小:1.52 MB
- 文档页数:64
极限的两个重要极限公式极限是高等数学中的重要概念,具有广泛的应用。
在研究函数的性质、求导、积分等方面,极限都起着重要的作用。
本文将介绍两个重要的极限公式,它们分别是复合函数的极限公式和级数的比较判别法。
一、复合函数的极限公式复合函数是由两个或多个函数组合而成的函数,例如f(g(x))。
当我们需要计算复合函数的极限时,可以使用复合函数的极限公式,它的表述如下:设函数f(x)在x0处连续,g(x)在x0处极限存在且等于a,则有:lim f(g(x)) = f(a)x→x0这个公式的意义是,当自变量x趋近于x0时,函数g(x)的值趋近于a,因此f(g(x))的值也趋近于f(a)。
这个公式的证明可以使用ε-δ定义,但在这里我们不再赘述。
这个公式的应用非常广泛,特别是在微积分中,它可以用于求导和积分。
例如,当我们需要求f(g(x))的导数时,可以先求出g(x)的导数,然后将它代入f(x)中,再乘以g'(x),即可得到f(g(x))的导数。
同样地,当我们需要对f(g(x))求积分时,可以将它转化为f(u)du的形式,其中u=g(x),du=g'(x)dx,然后再对f(u)进行积分。
二、级数的比较判别法级数是由无穷多个数相加得到的数列,例如1+1/2+1/3+1/4+...。
在研究级数的性质时,我们经常需要判断它是否收敛。
如果一个级数收敛,那么它的和就是一个有限的数;如果一个级数发散,那么它的和就是无穷大或无穷小。
级数的比较判别法是判断级数收敛性的一种方法,它的表述如下:设有两个级数an和bn,如果存在一个正整数N,使得当n>N 时,有an≤bn,则有:若级数bn收敛,则级数an也收敛。
若级数an发散,则级数bn也发散。
这个公式的意义是,如果级数an的每一项都小于等于级数bn 的对应项,那么an的收敛性和bn的收敛性是相同的。
如果bn收敛,那么an也收敛;如果an发散,那么bn也发散。
这个公式的证明也比较简单,可以使用比较原理和收敛级数的性质进行推导。