第27讲 坐标平面上的直线(1)(学生)
- 格式:doc
- 大小:303.50 KB
- 文档页数:3
第27讲(椭圆中两直线斜率之和为定值的问题)【目标导航】圆锥曲线中的定点、定值、探索性问题 【例题导读】例1、已知直线l 不过坐标原点O ,且与椭圆22:143x y C +=相交于不同的两点,,A B OAB ∆则22OA OB+的值是( )A .4B .7C .3D .不能确定【答案】B【解析】由题直线斜率k 不存在时,设直线x=t>0,则=,解则227OA OB +=k 存在时,设()()1122,,,A x y B x y ,y kx m,=+ 与椭圆22:143x y C +=联立得()()()()222222121222438348430,4843,,3434m km k x kmx m k m x x x x k k--+++-==+-+==++n ,AB =,点O 到直线l 的距离12AOBS n ∴===得22342k m +=,即22234m k -=① 又222211221,1,4343x y x y +=+=()()()222222222121212221186182462664434k m m k OA OB x x x x x x k -++⎡⎤+=++=+-+=+⎣⎦+=2222486182464mk m m k -+++ 将①代入得227OA OB +=故选B例2、已知A ,B 分别是双曲线C :22y x 12-=的左、右顶点,P 为C 上一点,且P 在第一象限.记直线PA ,PB 的斜率分别为k 1,k 2,当2k 1+k 2取得最小值时,△PAB 的重心坐标为( ) A .()1,1 B .41,3⎛⎫⎪⎝⎭C .4,13⎛⎫⎪⎝⎭D .44,33⎛⎫⎪⎝⎭【答案】B【解析】设A (1-,0),B (1,0),P (x ,y ) 由题意,11y k x =+,21yk x =-,∴21221y k k x ==-2,21k +2k =4,当且仅当2k 1=2k 时取等号,此时1k =1,P A 的方程为y =x +1,22k =,PB 的方程为y =2()1x -联立方程:()121y x y x =+⎧⎨-⎩=,解得P ()3,4∴重心坐标为11300441,333-++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 故选B例3、已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A 为椭圆C 的左顶点,直线l过点D(1,0),且与椭圆C 相交于E ,F 两点.(1) 求椭圆C 的方程;(2) 若△AEF 的面积为10,求直线l 的方程;(3) 已知直线AE ,AF 分别交直线x =3于点M ,N ,线段MN 的中点为Q ,设直线l 和QD 的斜率分别为k(k ≠0),k ′,求证:k·k′为定值.【解析】(1)由长轴长2a =4,两准线间距离2a 2c=42,解得a =2,c =2,(2分)则b 2=a 2-c 2=2,即椭圆方程为x 24+y 22=1.(4分) (2) 当直线l 的斜率不存在时,此时EF =6,△AEF 的面积S =12AD ·EF =326,不合题意;(5分)故直线l 的斜率存在,设直线l :y =k(x -1),代入椭圆方程得, (1+2k 2)x -4k 2x +2k 2-4=0.因为D(1,0)在椭圆内,所以Δ>0恒成立.设E(x 1,y 1),F(x 2,y 2),则有x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.(6分)故EF =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+k 2223k 2+21+2k 2.(7分)又点A 到直线l 的距离d =3|k|1+k 2,(8分) 则△AEF 的面积S =12d ·EF =12·3|k|1+k 2·1+k 2·223k 2+21+2k 2=323k 4+2k 21+2k 2=10,则k =±1.(9分)综上,直线l 的方程为x -y -1=0和x +y -1=0.(10分) (3) 证法1 设点E(x 1,y 1),F(x 2,y 2),则直线AE :y =y 1x 1+2(x +2),令x =3,得点M ⎝⎛⎭⎫3,5y 1x 1+2,同理可得N ⎝⎛⎭⎫3,5y 2x 2+2,所以点Q 的坐标为⎝ ⎛⎭⎪⎪⎫3,52y 1x 1+2+52y 2x 2+2.(12分)直线QD 的斜率为k′=5y 12(x 1+2)+5y 22(x 2+2)3-1=54⎝⎛⎭⎫y 1x 1+2+y 2x 2+2,(13分)而y 1x 1+2+y 2x 2+2=k (x 1-1)x 1+2+k (x 2-1)x 2+2=k·2x 1x 2+x 1+x 2-4x 1x 2+2(x 1+x 2)+4.(14分) 由(2)知x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,代入上式得,(15分)y 1x 1+2+y 2x 2+2=k·4k 2-8+4k 2-4(1+2k 2)2k 2-4+8k 2+4+8k 2=-12k 18k 2=-23k . 则有k′=-56k ,所以k·k′=-56,为定值.(16分)(3) 证法2 设点M(3,m),N(3,n),且m ≠n ,则Q ⎝⎛⎭⎫3,m +n 2,从而k′=m +n23-1=m +n 4.直线AM 的方程为y =m 5(x +2),与椭圆方程联立得(x +2)(x -2)+2m 225(x +2)2=0,可知x =-2或x =50-4m 225+2m 2,即点E ⎝ ⎛⎭⎪⎫50-4m 225+2m 2,20m 25+2m 2.故k DE =20m25+2m 250-4m 225+2m 2-1=20m 25-6m 2. 同理可得k DF =20n 25-6n 2.又D ,E ,F 三点共线,则有k =k DE =k DF=20m 25-6m 2=20n25-6n 2=20m -20n 6n 2-6m 2=20(m -n )-6(m +n )(m -n )=-103(m +n ).从而有k·k′=-56.例4、已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD为定值.【解析】(1)设椭圆的半焦距为c ,由已知得,c a =32,则a 2c -c =33,c 2=a 2-b 2,(3分) 解得a =2,b =1,c =3,(5分) 所以椭圆E 的标准方程是x 24+y 2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分) 所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分)所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分) 解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t), 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD→=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t2. 代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分) 因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)例5、如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.【解析】 (1) 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分)2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4,所以x 2A =44k 2+1,同理x 2P=84k 2+1.(6分) 所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x 0,y 0),所以直线l 1的方程为y -y 0=k 1(x -x 0),即y =k 1x -k 1x 0+y 0, 记t =-k 1x 0+y 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2-4=0,因为直线l 1与椭圆C 1有且只有一个公共点,所以Δ=(8k 1t)2-4(4k 21+1)(4t 2-4)=0,即4k 21-t 2+1=0,将t =-k 1x 0+y 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,(12分) 同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0, 所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 20-1=0的两根,从而k 1·k 2=y 20-1x 20-4.(14分)又点在P(x 0,y 0)椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 20,所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.(16分)例6、如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,左焦点F(-2,0),直线l :y =t 与椭圆交于A ,B 两点,M 为椭圆E 上异于A ,B 的点.(1) 求椭圆E 的方程;(2) 若M(-6,-1),以AB 为直径的圆P 过点M ,求圆P 的标准方程; (3) 设直线MA ,MB 与y 轴分别相交于点C ,D ,证明:OC·OD 为定值.【解析】 (1) 因为e =c a =22,且c =2,所以a =22,b =2.(2分)所以椭圆方程为x 28+y 24=1.(4分)(2)设A(s ,t),则B(-s ,t),且s 2+2t 2=8 ①.因为以AB 为直径的圆P 过点M ,所以MA ⊥MB ,所以MA →·MB →=0,(5分) 又MA →=(s +6,t +1),MB →=(-s +6,t +1),所以6-s 2+(t +1)2=0 ②.(6分) 由①②解得t =13,或t =-1(舍,因为M(-6,-1),所以t>0),所以s 2=709.(7分)又圆P 的圆心为AB 的中点(0,t),半径为AB2=|s|,(8分)所以圆P 的标准方程为x 2+⎝⎛⎭⎫y -132=709.(9分) (3)设M(x 0,y 0),则l MA 的方程为y -y 0=t -y 0s -x 0(x -x 0),若k 不存在,显然不符合条件. 令x =0得y C =-tx 0+sy 0s -x 0;同理y D =-tx 0-sy 0-s -x 0,(11分)所以OC·OD =|y C ·y D |=|-tx 0+sy 0s -x 0·-tx 0-sy 0-s -x 0|=⎪⎪⎪⎪⎪⎪t 2x 20-s 2y 20x 20-s 2.(13分)因为s 2+2t 2=8,x 20+2y 20=8,所以⎪⎪⎪⎪⎪⎪t 2x 20-s 2y 20x 20-s 2=⎪⎪⎪⎪⎪⎪t 2(8-2y 20)-(8-2t 2)y 208-2y 20-(8-2t 2)=⎪⎪⎪⎪⎪⎪8t 2-8y 202t 2-2y 20=4为定值.(16分)例7、如图,在平面直角坐标系xOy 中,已知B 1,B 2是椭圆x 2a 2+y 2b2=1(a>b>0)的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为y =x +3时,线段PB 1的长为4 2.(1) 求椭圆的标准方程;(2) 设点Q 满足QB 1⊥PB 1,QB 2⊥PB 2.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.【解析】 设P(x 0,y 0),Q(x 1,y 1).(1) 在y =x +3中,令x =0,得y =3,从而b =3.(2分) 由⎩⎪⎨⎪⎧x 2a 2+y 29=1,y =x +3得x 2a 2+(x +3)29=1.所以x 0=-6a 29+a 2.(4分)因为PB 1=x 20+(y 0-3)2=2|x 0|,所以42=2·6a 29+a2,解得a 2=18. 所以椭圆的标准方程为x 218+y 29=1.(6分)(2) 证法1(设点法) 直线PB 1的斜率为kPB 1=y 0-3x 0,由QB 1⊥PB 1,所以直线QB 1的斜率为kQB 1=-x 0y 0-3.于是直线QB 1的方程为y =-x 0y 0-3x +3.同理,QB 2的方程为y =-x 0y 0+3x -3.(8分) 联立两直线方程,消去y ,得x 1=y 20-9x 0.(10分)因为P(x 0,y 0)在椭圆x 218+y 29=1上,所以x 2018+y 209=1,从而y 20-9=-x 202.所以x 1=-x 02.(12分)所以S △PB 1B 2S △QB 1B 2=⎪⎪⎪⎪x 0x 1=2.(14分)证法2(设线法) 设直线PB 1,PB 2的斜率分别为k ,k ′,则直线PB 1的方程为y =kx +3. 由QB 1⊥PB 1,直线QB 1的方程为y =-1k x +3.将y =kx +3代入x 218+y 29=1,得(2k 2+1)x 2+12kx =0.因为P 是椭圆上异于点B 1,B 2的点,所以x 0≠0, 从而x 0=-12k2k 2+1.(8分)因为P(x 0,y 0)在椭圆x 218+y 29=1上,所以x 2018+y 209=1,从而y 20-9=-x 202.所以k·k′=y 0-3x 0·y 0+3x 0=y 20-9x 20=-12,得k′=-12k.(10分)由QB 2⊥PB 2,所以直线QB 2的方程为y =2kx -3. 联立⎩⎪⎨⎪⎧y =-1k x +3,y =2kx -3,则x =6k 2k 2+1,即x 1=6k2k 2+1.(12分)所以S △PB 1B 2S △QB 1B 2=⎪⎪⎪⎪x 0x 1=⎪⎪⎪⎪⎪⎪-12k2k 2+16k 2k 2+1=2.(14分) 例8、如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦点到相应准线的距离为1.(1) 求椭圆的标准方程;(2) 若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =2于点Q ,求1OP 2+1OQ2的值.【解析】(1) 由题意得,c a =22,a 2c-c =1, (2分)解得a =2,c =1,b =1.所以椭圆的标准方程为x 22+y 2=1.(4分)(2) 由题意知OP 的斜率存在.当OP 的斜率为0时,OP =2,OQ =2,所以1OP 2+1OQ 2=1.(6分)当OP 的斜率不为0时,设直线OP 方程为y =kx .由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx ,得(2k 2+1)x 2=2,解得x 2=22k 2+1,所以y 2=2k 22k 2+1,所以OP 2=2k 2+22k 2+1.(9分)因为OP ⊥OQ ,所以直线OQ 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =2,y =-1k x得x =-2k ,所以OQ 2=2k 2+2.(12分) 所以1OP 2+1OQ 2=2k 2+12k 2+2+12k 2+2=1.综上,可知1OP 2+1OQ2=1.(14分)例9、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点P(2,-1).(1) 求椭圆C 的方程;(2) 设点Q 在椭圆C 上,且PQ 与x 轴平行,过点P 作两条直线分别交椭圆C 于A(x 1,y 1),B(x 2,y 2)两点,若直线PQ 平分∠APB ,求证:直线AB 的斜率是定值,并求出这个定值..【解析】(1) 由e =c a =32,得a ∶b ∶c =2∶1∶3,椭圆C 的方程为x 24b 2+y 2b2=1.(2分)把P (2,-1)的坐标代入,得b 2=2,所以椭圆C 的方程是x 28+y 22=1.(5分)(2) 由已知得P A ,PB 的斜率存在,且互为相反数.(6分) 设直线P A 的方程为y +1=k (x -2),其中k ≠0.由⎩⎪⎨⎪⎧y +1=k (x -2),x 2+4y 2=8,消去y ,得x 2+4[kx -(2k +1)]2=8, 即(1+4k 2)x 2-8k (2k +1)x +4(2k +1)2-8=0.(8分)因为该方程的两根为2,x A ,所以2x A =4(2k +1)2-81+4k 2,即x A =8k 2+8k -21+4k 2.从而y A =4k 2-4k -14k 2+1.(10分)把k 换成-k ,得x B =8k 2-8k -21+4k 2,y B =4k 2+4k -14k 2+1.(12分)计算,得k AB =y B -y A x B -x A =8k -16k=-12,是定值.(14分)解后反思 利用直线P A 与椭圆C 已经有一个交点P (2,-1),可使得解答更简单.由⎩⎪⎨⎪⎧ y +1=k (x -2),x 2+4y 2=8,得⎩⎪⎨⎪⎧y +1=k (x -2),4(y 2-1)=4-x 2, 当(x ,y )≠(2,-1)时,可得⎩⎪⎨⎪⎧y +1=k (x -2),4k (y -1)=-x -2.解得⎩⎪⎨⎪⎧x A =8k 2+8k -24k 2+1,y A=4k 2-4k -14k 2+1.以下同解答.下面介绍一个更优雅的解法.由A ,B 在椭圆C :x 2+4y 2=8上,得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0,所以k AB =y 1-y 2x 1-x 2=-14·x 1+x 2y 1+y 2. 同理k P A =y 1+1x 1-2=-14·x 1+2y 1-1,k PB =y 2+1x 2-2=-14·x 2+2y 2-1.由已知,得k P A =-k PB ,所以y 1+1x 1-2=-y 2+1x 2-2,且x 1+2y 1-1=-x 2+2y 2-1,即x 1y 2+x 2y 1=2(y 1+y 2)-(x 1+x 2)+4,且x 1y 2+x 2y 1=(x 1+x 2)-2(y 1+y 2)+4.从而可得x 1+x 2=2(y 1+y 2).所以k AB =-14·x 1+x 2y 1+y 2=-12,是定值.【反馈练习】1、如图,抛物线M :28y x =的焦点为F ,过点F 的直线l 与抛物线M 交于A ,B 两点,若直线l 与以F为圆心,线段OF (O 为坐标原点)长为半径的圆交于C ,D 两点,则关于AC BD⋅值的说法正确的是( )A .等于4B .大于4C .小于4D .不确定【答案】A【解析】据题意,得点F 的坐标为()2,0.设直线l 的方程为20x my --=,点A ,B 的坐标分别为()11,x y ,()22,x y .讨论:当0m =时,122x x ==;当0m ≠时,据282y x my x ⎧=⎨=-⎩,得()228440x m x -++=,所以124x x =,所以()()22AC BD AF BF ⋅=-⋅-()()121222224x x x x =+-⋅+-==.2、已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过F 的直线与C 交于A ,B 两点,交l 于D ,过A ,B 分别作x 轴的平行线,分别交l 于M ,N 两点.若4AB FB =u u u v u u u v,AND ∆的面积等于323,则C 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =【答案】D【解析】结合抛物线的性质可知,3FB BN AF BF ==,所以2AG BF =结合11323223AND S BN ND BG NB =⋅⋅+⋅⋅=V 12839NB GB ⋅=对于三角形AGB ,该三角形为直角三角形,所以23GB BN =,代入,得到83NB = 故030GBA ∠=,所以直线AB 3,设直线AB 方程为32p y x ⎫=-⎪⎭,代入抛物线方程,得到2233504x px p -+=,而B 点横坐标为832p -,A 点横坐标为82p- 故8583223p p p -+-=,计算4p =,所以抛物线方程为28y x =,故选D .3、在直角坐标系xOy 中,椭圆C 的方程为22143x y +=,左右焦点分别为1F ,2F ,设Q 为椭圆C 上位于x轴上方的一点,且1QF x ⊥轴,M 、N 为椭圆C 上不同于Q 的两点,且11MQF NQF ∠=∠,设直线MN 与y 轴交于点(0,)D d ,则d 的取值范围为____.【答案】(2,1)-【解析】设直线QM 的斜率为k ,因为11MQF NQF ∠=∠,所以QM ,QN 关于直线1QF 对称, 所以直线QN 的斜率为k -,因为Q 为椭圆C 上位于x 轴上方的一点,且1QF x ⊥轴,所以易得()11,0F -,31,2Q ⎛⎫- ⎪⎝⎭, 所以直线QM 的方程是()312y k x -=+, 设()33,M x y ,()44,N x y由()2231,2143y k x x y ⎧-=+⎪⎪⎨⎪+=⎪⎩消去y 得,()()()2223412841230k x k kx k k +++++-=, 所以2324123134k k x k +--⋅=+,所以232412334k k x k --+=+ 将上式中的k 换成k -得,242412334k k x k-++=+, 所以()343434342MNk x x y y k x x x x ⎡⎤++-⎣⎦==-- 22286234124234k k k k k⎛⎫-++ ⎪+⎝⎭==--+ 所以直线MN 的方程是12y x d =-+, 代入椭圆方程22143x y +=得,2230x dx d -+-=,所以()()22430d d ∆=--->,所以22d -<<,又因为MN 在Q 点下方,所以()31122d >-⨯-+,所以d 的取值范围为()2,1-. 故答案为()2,1-4、已知P 为双曲线221x y -=右支上任意一点,Q 与P 关于x 轴对称,12,F F 为双曲线的左、右焦点,则12F P F Q ⋅=u u u v u u u u v__________.【答案】1-【解析】由题双曲线的焦点12F ,F 为(0),0)设P (00,x y ),则Q (00,x y -), 12F P F Q ⋅=u u u v u u u u v(00x y )⋅(00x y -)=22002x y --=-1故答案为-15、已知椭圆()2222:10x y C a b a b +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=u u u u v u u u v u u u v,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】(1)22142x y +=;(2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题意可得22222211c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得24a =,22b =,因此,椭圆C 的标准方程为22142x y +=;(2)当直线l 的斜率不存在时,直线MN 的方程为1x =-或1x =.若直线l 的方程为1x =,联立221142x x y =⎧⎪⎨+=⎪⎩,可得1x y =⎧⎪⎨=⎪⎩此时,MN =OMDN的面积为122= 同理,当直线l 的方程为1x =-时,可求得四边形OMDN; 当直线l 的斜率存在时,设直线l 方程是y kx m =+,代人到22142x y +=,得()222124240k x kmx m +++-=,122412km x x k -∴+=+,21222412m x x k -=+,()228420k m ∆=+->, ()12122221my y k x x m k∴+=++=+,12212MN x x k=-==+,点O 到直线MN的距离d =,由OM OC OD +=u u u u r u u u r u u u r,得122421D km x x x k =+=-+,122212D my y y k =+=+, Q 点D 在椭圆C 上,所以有222421212142km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22122k m +=,由题意知,四边形OMDN 为平行四边形,∴平行四边形OMDN的面积为2122212OMDN OMNS S MN d k ∆==⨯⨯=+()222121k k +====+故四边形OMDN .6、设O 为坐标原点,动点M 在椭圆C :2221(15)x y a a+=<<上,该椭圆的左顶点A 到直线50x y-+=. ()1求椭圆C 的标准方程;()2若线段MN 平行于y 轴,满足()20ON OM MN -⋅=u u u r u u u u r u uu u r ,动点P 在直线x = 2.ON NP ⋅=u u u r u u u r证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F .【答案】(1)2214x y +=;(2)见解析【解析】(1)由题意: ()A a,0-2︱︱-=, 1a 5<<Q a 2∴= ∴椭圆C 的标准方程为: 22x y 14+=(2)设()M m,n , ()P t ,则22m 4n 4+=, (ON 2OM)MN 0-⋅=u u u u v u u u u v u u u u vQ ,即()()110y 2n 0,y n 0--=n ,,解1y 2n =∴ ()N m,2n , ON NP 2u u u v u Q u u v⋅=,()ON OP ON 2∴⋅-=u u u v u u u v u u u v ,即:()()m,2n m,t 2n -,得222nt (m 4n )2+-+= ,nt 30+-=Q 直线OP 的方程为: tx 0-=, 设过点N 且垂直于OP 直线为l ,∴直线l 的方程:ty 2tn 0+-+= ,即ty 60+-=∴直线l 过定点),即直线l 恒过椭圆的右焦点F7、已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【答案】(1)24y x =;(2)(2,0)-【解析】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为()1,0,所以2p =,所以抛物线的方程为24y x =;(2)【解法一】因为点P 与点M 关于x 轴对称 所以设()11,P x y ,()22,Q x y ,()11,M x y -, 设直线PQ 的方程为()2y k x =-,代入24y x =得:()22224140k x k x k -++=,所以124x x =,设直线MQ 的方程为y mx n =+,代入24y x =得:()222240m x mn x n +-+=,所以21224n x x m==,因为10x >,20x >,所以2nm=,即2n m =, 所以直线MQ 的方程为()2y m x =+,必过定点()2,0-. 【解法二】设()11,P x y ,()22,Q x y ,()33,M x y , 因为点P 与点M 关于x 轴对称,所以31y y =-, 设直线PQ 的方程为2x ty =+,代入24y x =得:2480y ty --=,所以128y y =-,设直线MQ 的方程为x my n =+,代入24y x =得:2440y my n --=,所以234y y n =-,因为31y y =-,所以()211248y y y y n -=-=-=,即2n =-, 所以直线MQ 的方程为2x my =-,必过定点()2,0-.8、已知O 为坐标原点,点1(F ,2F ,S ,动点N 满足1NF NS +=P为线段1NF 的中点,抛物线C :22(0)x my m =>上点A ,OA OS ⋅=u u u v u u u v. (1)求动点P 的轨迹曲线W 的标准方程及抛物线C 的标准方程; (2)若抛物线C 的准线上一点Q 满足OP OQ ⊥,试判断2211||||OP OQ +是否为定值,若是,求这个定值;若不是,请说明理由.【答案】(1)曲线W 的标准方程为2213x y +=.抛物线C 的标准方程为2x =.(2)见解析【解析】(1)由题知22NS PF =,112NF PF =,所以12122NF NF PF PF ++=12F F =>,因此动点P 的轨迹W 是以1F ,2F 为焦点的椭圆,又知2a =,2c =,所以曲线W 的标准方程为2213x y +=.又由题知(A A x ,所以(()A OA OS x ⋅=⋅u u u v u u u vA ==,所以A x =又因为点(A 在抛物线C上,所以m =所以抛物线C的标准方程为2x =.(2)设(),P P P x y,,Q Q x ⎛ ⎝⎭, 由题知OP OQ ⊥,所以02Pp Q x x -=,即)0Q P P x x =≠, 所以222222111133||||22P P P P y OP OQ x y x +=+++ ()222323P P P x x y +=+, 又因为2213P P x y +=,2213P P x y =-,所以()222222323213313P PP P PP x x x x y x ++==⎛⎫++- ⎪⎝⎭, 所以2211||||OP OQ +为定值,且定值为1.。
第27讲(椭圆中两直线斜率之和为定值的问题)【目标导航】圆锥曲线中的定点、定值、探索性问题 【例题导读】例1、已知直线l 不过坐标原点O ,且与椭圆22:143x y C +=相交于不同的两点,,A B OAB ∆则22OA OB+的值是( )A .4B .7C .3D .不能确定例2、已知A ,B 分别是双曲线C :22y x 12-=的左、右顶点,P 为C 上一点,且P 在第一象限.记直线PA ,PB 的斜率分别为k 1,k 2,当2k 1+k 2取得最小值时,△PAB 的重心坐标为( ) A .()1,1 B .41,3⎛⎫⎪⎝⎭C .4,13⎛⎫⎪⎝⎭D .44,33⎛⎫⎪⎝⎭例3、已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A 为椭圆C 的左顶点,直线l过点D(1,0),且与椭圆C 相交于E ,F 两点.(1) 求椭圆C 的方程;(2) 若△AEF 的面积为10,求直线l 的方程;(3) 已知直线AE ,AF 分别交直线x =3于点M ,N ,线段MN 的中点为Q ,设直线l 和QD 的斜率分别为k(k ≠0),k ′,求证:k·k′为定值.例4、已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD为定值.例5、如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程;(2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.例6、如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,左焦点F(-2,0),直线l :y =t 与椭圆交于A ,B 两点,M 为椭圆E 上异于A ,B 的点.(1) 求椭圆E 的方程;(2) 若M(-6,-1),以AB 为直径的圆P 过点M ,求圆P 的标准方程; (3) 设直线MA ,MB 与y 轴分别相交于点C ,D ,证明:OC·OD 为定值.例7、如图,在平面直角坐标系xOy 中,已知B 1,B 2是椭圆x 2a 2+y 2b 2=1(a>b>0)的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为y =x +3时,线段PB 1的长为4 2.(1) 求椭圆的标准方程;(2) 设点Q 满足QB 1⊥PB 1,QB 2⊥PB 2.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.例8、如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦点到相应准线的距离为1.(1) 求椭圆的标准方程;(2) 若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =2于点Q ,求1OP 2+1OQ2的值.例9、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点P(2,-1).(1) 求椭圆C 的方程;(2) 设点Q 在椭圆C 上,且PQ 与x 轴平行,过点P 作两条直线分别交椭圆C 于A(x 1,y 1),B(x 2,y 2)两点,若直线PQ 平分∠APB ,求证:直线AB 的斜率是定值,并求出这个定值.. 【反馈练习】1、如图,抛物线M :28y x =的焦点为F ,过点F 的直线l 与抛物线M 交于A ,B 两点,若直线l 与以F为圆心,线段OF (O 为坐标原点)长为半径的圆交于C ,D 两点,则关于AC BD⋅值的说法正确的是( )A .等于4B .大于4C .小于4D .不确定2、已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过F 的直线与C 交于A ,B 两点,交l 于D ,过A ,B 分别作x 轴的平行线,分别交l 于M ,N 两点.若4AB FB =u u u v u u u v,AND ∆的面积等于323,则C 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =3、在直角坐标系xOy 中,椭圆C 的方程为22143x y +=,左右焦点分别为1F ,2F ,设Q 为椭圆C 上位于x轴上方的一点,且1QF x ⊥轴,M 、N 为椭圆C 上不同于Q 的两点,且11MQF NQF ∠=∠,设直线MN 与y 轴交于点(0,)D d ,则d 的取值范围为____.4、已知P 为双曲线221x y -=右支上任意一点,Q 与P 关于x 轴对称,12,F F 为双曲线的左、右焦点,则12F P F Q ⋅=u u u v u u u u v__________.5、已知椭圆()2222:10x y C a b a b +=>>的离心率2e =)2,1(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=u u u u v u u u v u u u v,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.6、设O 为坐标原点,动点M 在椭圆C :2221(15)x y a a+=<<上,该椭圆的左顶点A 到直线50x y -+=. ()1求椭圆C 的标准方程;()2若线段MN 平行于y 轴,满足()20ON OM MN -⋅=u u u r u u u u r u u u u r ,动点P 在直线x = 2.ON NP ⋅=u u u r u u u r证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F .7、已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.8、已知O 为坐标原点,点1(F ,2F ,S ,动点N 满足1NF NS +=P为线段1NF 的中点,抛物线C :22(0)x my m =>上点A ,OA OS ⋅=u u u v u u u v .(1)求动点P 的轨迹曲线W 的标准方程及抛物线C 的标准方程; (2)若抛物线C 的准线上一点Q 满足OP OQ ⊥,试判断2211||||OP OQ +是否为定值,若是,求这个定值;若不是,请说明理由.。
《平面直角坐标系》的教案(精选5篇)《平面直角坐标系》的教案(精选5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
那么你有了解过教案吗?下面是小编收集整理的《平面直角坐标系》的教案(精选5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
《平面直角坐标系》的教案1[教学目标]1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位2、渗透对应关系,提高学生的数感。
[教学重点与难点]重点:平面直角坐标系和点的坐标。
难点:正确画坐标和找对应点。
[教学设计][设计说明]一、利用已有知识,引入1.如图,怎样说明数轴上点A和点B的位置,2.根据下图,你能正确说出各个象棋子的位置吗?二、明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system)。
水平的数轴称为x轴(x—axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y—axis)或纵轴,取向上方向为由数轴的表示引入,到两个数轴和有序数对。
从学生熟悉的物品入手,引申到平面直角坐标系。
描述平面直角坐标系特征和画法正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。
表示方法为(a,b)。
a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1 写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?例2 在平面直角坐标系中描出下列各点。
()A(3,4);B(—1,2);C(—3,—2);D(2,—2)问题1:各象限点的坐标有什么特征?练习:教材49页:练习1,2、三。
深入探索教材48页:探索:识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
专题3.3 平面直角坐标系(知识讲解)【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系;2.能在平面直角坐标系中,根据坐标确定点,以及由点的位置求出坐标;3.掌握点位置与其坐标的符号特征;3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).特别说明::有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是8排9号,可以写成(8,9)的形式,而(9,8)则表示9排8号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).特别说明::平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.特别说明::(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.特别说明::(1)坐标轴x 轴与y 轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律特别说明::(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x 轴上的点的纵坐标为0;y 轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a ,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a ,-a).3.平行于坐标轴的直线上的点平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同.要点五、两点之间距离公式及中点坐标公式1. 两点之间距离公式1122(,),A B x y AB =点(x ,y )则2.中点坐标公式12121122(,),;22x x y y A B x y AB C y ++=点(x ,y )线段中点为(x,y ),则x= 【典型例题】类型一、建立平面直角坐标系并求点的坐标(建系)1.如图,正三角形ABC 的边长为 4 , 建立适当的直角坐标系 ,并写出各个顶点的坐标 .【答案】A (0,,B (-2,0 ),C (2,0)解:如图,以边BC 所在的直线为x 轴,以边BC 的中垂线为y 轴建立直角坐标系. 由正三角形的性质可知AO =ABC 各个顶点A ,B ,C 的坐标分别为A(0,,B (-2,0 ),C (2,0).举一反三:【变式1】如图,点A 、B 、C 都在方格纸的格点上,若点A 的坐标为()0,2,点B 的坐标为()2,0,试建立恰当的直角坐标系,写出点C 的坐标.【答案】图见分析,()2,1C【分析】根据点的坐标建立坐标系,再确定坐标.解:如图所示建立直角坐标系:∴点C 的坐标为(2,1).【点拨】本题考查了坐标系及其点的坐标,正确建立平面直角坐标系是解题的关键.【变式2】如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C -和(0,0)的坐标分别为(4,0)(1)请直接写出A,D,E,F的坐标;(2)求正方形CDEF的面积.【答案】(1)A(﹣6,3),D(2,1),E(1,3),F(﹣1,2)(2)5【分析】(1)先利用点B和点C的坐标画出平面直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F的坐标;(2)利用正方形的面积公式和勾股定理解答即可.(1)解:如图所示:∴A(﹣6,3),D(2,1),E(1,3),F(﹣1,2).(2)解:∴ CD∴正方形CDEF的面积=5.【点拨】本题考查了坐标与图形性质:利用点的坐标求线段长和判断线段与坐标轴的位置关系;记住坐标系中坐标特征是解题的关键.类型二、点到坐标轴的距离2.已知点(23,4)A a a -+在第一象限,且点A 到x 轴和y 轴的距离相等,求点A 的坐标.【答案】(11,11)【分析】直接利用第一象限内点的坐标特点,横纵坐标的符号关系,结合点A 到x 轴和y 轴的距离相等,得出横纵坐标相等,进而得出答案. 解:点(23,4)A a a -+在第一象限,点A 到x 轴和y 轴的距离相等,234a a ∴-=+,解得:7a =,故2327311a -=⨯-=,411a +=,则点A 的坐标为:(11,11).【点拨】本题主要考查了第一象限内点的坐标特点,解题的关键是结合点A 到x 轴和y 轴的距离相等,得出横纵坐标相等,进而得出答案.举一反三:【变式1】已知平面直角坐标系中有一点(21,3)M m m --.(1)当点M 到y 轴的距离为1时,求点M 的坐标;(2)当点M 到x 轴的距离为2时,求点M 的坐标.【答案】(1)点M 的坐标是(1,2)-或(1,3)--;(2)点M 的坐标是(9,2)或(1,2)-【分析】根据点到坐标轴的距离为其横坐标或纵坐标的绝对值求解即可.解:(1)|21|1m -=,211m ∴-=或211m -=-,解得1m =或0m =,∴点M 的坐标是(1,2)-或(1,3)--.(2)|3|2m -=,32m ∴-=或32m -=-,解得5m =或1m =,∴点M 的坐标是(9,2)或(1,2)-.【点拨】本题考查的知识点是根据点到坐标轴的距离求点的坐标,需注意多解问题,不要漏解.【变式2】已知平面直角坐标系中有一点M(m -1,2m +3).(1) 当m 为何值时,点M 到x 轴的距离为1?(2) 当m 为何值时,点M 到y 轴的距离为2?【答案】(1)m =-1或m =-2.(2)m =3或m =-1.试题分析:(1)让纵坐标的绝对值为1列式求值即可;(2)让横坐标的绝对值为2列式求值即可.解:(1)∴|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∴|m -1|=2m -1=2或m -1=-2∴m=3或m=-1.考点:点的坐标.类型三、判断点所在的象限3.已知点(3,22)-+A a b ,以点A 为坐标原点建立直角坐标系.(1) 求a ,b 的值;(2) 判断点(24,31)--B a b 、点(3,)-+C a b 所在的位置.【答案】(1)a =3,b =−1(2)B (2,−4)在第四象限;C (0,−1)在y 轴的负半轴上且到x 轴的距离为1.【分析】(1)根据点A 为原点,则点A 的横纵坐标都为0,解答即可;(2)把a =3,b =−1分别代入B ,C 即可求解.(1)解:∴点A 为原点,∴a −3=0,2b +2=0,解得:a =3,b =−1;(2)解:把a =3,b =−1代入点B 得:2a −4=2×3−4=2,3b −1=3×(−1)−1=−4,∴B (2,−4)在第四象限;把a =3,b =−1代入点C 得:−a +3=−3+3=0,b =−1,∴C (0,−1)在y 轴的负半轴上且到x 轴的距离为1.【点拨】本题考查了点的坐标,解题的关键是掌握x 轴,y 轴上点的坐标特征. 举一反三:【变式1】已知a ,b 都是实数,设点P (a ,b ),若满足3a =2b +5,则称点P 为“新奇点”.(1) 判断点A (3,2 )是否为“新奇点”,并说明理由;(2) 若点M (m -1,3m +2)是“新奇点”,请判断点M 在第几象限,并说明理由.【答案】(1)点A (3,2)是“新奇点”,理由见分析,(2)点M 在第三象限,理由见分析.【分析】(1)根据题目中“新奇点”的判断方法,将3a =,2b =,代入判断325a b =+,即可证明;(2)根据点()132M m m -+,是“新奇点”,可得()()312325m m -=++,求解代入得出4m =-,即可确定点的坐标,然后判断在哪个象限即可.(1)解:点()32A ,是“新奇点”,理由如下: 当A (3,2)时,3a =,2b =,∴39a =,259b +=,∴325a b =+.∴点()32A ,是“新奇点”; (3) 点M 在第三象限,理由如下:∴点()132M m m -+,是“新奇点”, ∴1a m =-,32b m =+,∴()()312325m m -=++,解得:4m =-,∴15m -=-,3210m +=-,∴点()5,10M --在第三象限.【点拨】题目主要考查求代数式的值及解一元一次方程,判定点所在象限,理解题中新的定义是解题关键.【变式2】在图中建立适当的平面直角坐标系,使A 、B 两点的坐标分别为(-4,1)和(-1,4),写出点C 、D 的坐标,并指出它们所在的象限.【分析】首先根据点A 、B 的坐标确定坐标原点和x 、y 轴的正方向,进而建立平面直角坐标系,再结合图形得出C 、D 两点的坐标,进而判断这两个点所在的象限.解:建立平面直角坐标系如图:得C (-1,-2)、D (2,1).由图可知,点C 在第三象限,点D 在第一象限.【点拨】本题考查了已知两点确定直角坐标系的知识,根据两点的坐标建立平面直角坐标系是解题的关键.类型四、已知点的象限求参数4.在平面直角坐标系中,有一点M (a -2,2a +6),试求满足下列条件的a 值或取值范围.(1) 点M 在y 轴上;(2) 点M 在第二象限;(3) M 到x 轴的距离为2.【答案】(1)a =2(2)-3<a <2(3)a =–2或–4【分析】(1)点在y 轴上,该点的横坐标为0即可求解;(2)根据第二象限的点的横坐标小于0,纵坐标大于0即可求解;(3)根据点到x 轴的距离为2,则该点的纵坐标的绝对值为2,据此计算即可.(1)解:由题意得,a ﹣2=0,解得a =2;(2)解:由20260a a -⎧⎨+⎩<>, 解得,﹣3<a <2;(3)解:由|2a +6|=2,解得a =–2或–4.【点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限内点的坐标的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).举一反三:【变式1】已知点()39,210A m m --,分别根据下列条件解决问题:(1) 点A 在x 轴上,求m 的值;(2) 点A 在第四象限,且m 为整数,求点A 的坐标.【答案】(1)5m = (2)()3,2A -【分析】(1)根据x 轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据第四象限点的符号特征(),+-,列出不等式组求出m 的值,求出点A 坐标;(1)解:由2100m -=,得5m =;(2)∴点()39,210A m m --在第四象限,∴3902100m m ->⎧⎨-<⎩①②, 解不等式∴得3m >,解不等式∴得5m <,所以,m 的取值范围是35m <<,∴m 为整数,∴4m =,∴()3,2A -.【点拨】本题考查平面直角坐标中点的坐标,x 轴上的点的纵坐标等于零,各象限点的特征,解题关键是熟记点的特征.【变式2】已知平面直角坐标系中一点()25,3A a a -+,分别求出满足下列条件的点A 的坐标.(1) 点A 在过点()3,3-且平行于x 轴的直线上;(2) 点A 在第一、三象限的角平分线上;(3) 点A 在第二象限,且到两坐标轴的距离之和为10.【答案】(1)()17,3--(2)()11,11(3)()9,1-【分析】(1)根据平行于x 轴的直线上点的纵坐标相同,即可求解;(2)根据在第一、三象限的角平分线上的点横纵坐标相同,即可求解;(3)根据点A 在第二象限,可得25030a a -<⎧⎨+>⎩,再由点A 到两坐标轴的距离之和为10,可得52310a a -++=,即可求解.(1)解:∴点A 在过点()3,3-且平行于x 轴的直线上,∴33a +=-,解得:6a =-,∴2517,33a a -=-+=-,∴点A 的坐标为()17,3--;(2)解:∴点A 在第一、三象限的角平分线上,∴253a a -=+,解得:8a =,∴25311a a -=+=,∴点A 的坐标为()11,11;(3)解:∴点A 在第二象限,∴25030a a -<⎧⎨+>⎩,解得:532a -<<, ∴点A 到两坐标轴的距离之和为10,25310a a -++=,∴52310a a -++=,解得:2a =-,∴259,31a a -=-+=,∴点A 的坐标为()9,1-.【点拨】本题主要考查了平面直角坐标系中各象限内点的坐标的特征及点到坐标轴的距离的应用,点在第一、三象限的角平分线上的坐标特征,熟练掌握相关知识点是解题的关键.类型五、坐标系中描点5.在平面直角坐标系中,把以下各组点描出来,并顺次连接各点.(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).解:如图:举一反三:【变式1】如图,点A 、B 在单位长度为1的正方形网格的格点上,建立平面直角坐标系,使点A 、B 的坐标分别为(3,0)(2,0)-、(1)请在图中建立平面直角坐标系.(2)若C 、D 两点的坐标分别为(1,2)、(2,2)-,请描出C 、D 两点.C 、D 两点的坐标有什么异同?直线CD 与x 轴有什么关系?(3)若点(24,1)E m m +-为直线CD 上的一点,则m =___________,点E 的坐标为___________.【答案】(1)答案见分析 (2)答案见分析 (3)3;()10,2E【分析】(1)根据A 、B 两点的坐标即可建立坐标系;(2)直接描出C 、D 两点坐标即可,根据横、纵坐标即可找到规律;(3)根据直线CD 上点的坐标规律即可求出m .(1)解:如图所示,(2)解:C 、D 两点如图所示,由图可知C 、D 两点横坐标不同,纵坐标相同;直线CD 与x 轴平行;(3)解:由(2)可知//CD x 轴,点(24,1)E m m +-为直线CD 上的一点,12m ∴-=,3m ∴=,2410m ∴+=,()10,2E ∴ .【点拨】本题主要考查坐标与图形,平面直角坐标系等知识,解题的关键是正确作出平面直角坐标系.【变式2】已知平面直角坐标系内有4个点:A (0,2),B (-2,0),C (1,-1),D (3,1).(1)在平面直角坐标系中描出这4个点;(2)顺次连接A 、B 、C 、D 组成四边形ABCD ,请用两种方法求出四边形ABCD 的面积.【答案】(1)见分析(2)8【分析】(1)根据平面直角坐标系描出点的坐标;(2)根据ΔΔΔΔAEB BFC CGD DHA EFGH ABCD S S S S S S =----长方形四边形,ΔΔΔΔABP BCQ CDM ADN PQMN ABCD S S S S S S =++++正方形四边形求面积即可求解.(1)解:如图所示:点A 、B 、C 、D 为所描的点.(2)方法一:如图所示,作长方形EFGH :则有ΔΔΔΔAEB BFC CGD DHA EFGH ABCD S S S S S S =----长方形四边形111153221322132222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯ 8=方法二:如图所示,将四边形ABCD 分割为△ABP 、△BCQ 、△CMD 、△AND 和正方形PQMN ,则有ΔΔΔΔABP BCQ CDM ADN PQMN ABCD S S S S S S =++++正方形四边形11111221322132222=+⨯⨯+⨯⨯+⨯⨯+⨯⨯ 8=.【点拨】本题考查了坐标与图形,数形结合是解题的关键.类型六、坐标与图形6.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(a , 0),点C 的坐标为(0,b ),且a 、b 满足8a -+|b - 12|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →A →B →C →O 的路线移动.(1) 点B 的坐标为________;当点 P 移动5秒时,点P 的坐标为(2) 在移动过程中,当点P 移动11秒时,求△OPB 的面积.(3) 在(2)的条件下,坐标轴上是否存在点Q ,使△OPQ 与△OPB 的面积相等.若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)(8,12),(8,2);(2)当点P 移动11秒时,△OPB 的面积为12;(3)(0,4)、(0,-4)、(2,0)、(-2,0).【分析】(1)利用非负数的性质求出a ,b ,可得B 点坐标,再求出点P 移动5秒的路程,可得P 点坐标;(2)求出点P 的坐标,可得PB =2,然后根据三角形面积公式计算即可;(3)分情况讨论:∴当点Q 在y 轴上时,∴当点Q 在x 轴上时,分别根据S △OPQ =S △OPB列式求出OQ ,即可得到对应的点Q 的坐标.(1)解:120b -=,∴80a -=,120b -=,∴8a =,12b =,∴A (8,0),B (0,12),∴OA =BC =8,OC =AB =12,∴B (8,12),∴点P 移动5秒时,移动的路程为5×2=10,∴P (8,2),故答案为:(8,12),(8,2);(2)当点P 移动11秒时,移动的路程为:11×2=22,∴P (6,12),∴PB =8-6=2,∴S △OPB =1212122⨯⨯=; (3)分情况讨论:∴当点Q 在y 轴上时,∴点P 移动11秒时,P 点坐标为(6,12),S △OPB =12,∴由S △OPQ =S △OPB 得:16122OQ ⨯=,∴4OQ =,∴点Q 的坐标为:(0,4)或(0,-4);∴当点Q 在x 轴上时,∴点P 移动11秒时,P 点坐标为(6,12),S △OPB =12,∴由S △OPQ =S △OPB 得:112122OQ ⨯=,∴2OQ ,∴点Q 的坐标为:(2,0)或(-2,0),综上,点Q 坐标为:(0,4)或(0,-4)或(2,0)或(-2,0).【点拨】本题考查了算术平方根和绝对值的非负性,坐标与图形,三角形面积计算等知识,熟练掌握数形结合思想与分类讨论思想的应用是解题的关键.举一反三:【变式1】如图,长方形OABC 的顶点O 为平面直角坐标系的原点,点A 和点C 分别在x 轴和y 轴的正半轴上,点B 的坐标为(),a b ,且20a b -+=.(1) 求点B 的坐标;(2) 点D 是线段AB 的中点,求OAD △的面积;【答案】(1 ) ()3,5B (2)154OAD S =△【分析】(1)由绝对值和算术平方根的非负性质得2032190a b a b -+=⎧⎨+-=⎩,即可得出结论; (2)由矩形的性质得到90OAB ∠=︒,3OA = 5AB =, 再求出AD 的长,即可解决问题.(1)解:∴20a b -+,∴2032190a b a b -+=⎧⎨+-=⎩ 解得35a b =⎧⎨=⎩, ∴()3,5B ;(2)解:()3,5B ,四边形OABC 是矩形,90OAB ︒∴∠=,3OA =,5AB =,∴点D 是线段AB 的中点, ∴1522AD AB == , ∴15153224OAD S =⨯⨯=△. 【点拨】本题主要考查矩形的性质,绝对值和算术平方根的非负性,二元一次方程组的解法,熟练掌握矩形的性质是解题的关键.【变式2】有一张图纸被损坏,但上面有如图的两个标志点A (-3,1),B (-3,-3)可认,而主要建筑C (3,2)破损.(1) 建立直角坐标系;(2) 标出图中C 点的位置;(3) 求出线段AC 的长.【答案】(1)作图见分析;(2)作图见分析;.【分析】(1)以点A向右3个单位,向下1个单位为坐标原点建立平面直角坐标系;(2)根据C(3,2)确定出点C的位置即可;(3)利用勾股定理即可求得线段AC的长.(1)解:建立直角坐标系如下图所示,(2)解:图中C点的位置如下图所示,(3)解:如下图,∴在Rt ∴ACF 中,∴AFC =90°,CF =1,F A =6,∴AC =【点拨】考查了确定坐标系中点的位置及勾股定理,根据已知点的坐标准确确定出坐标原点的位置是解题的关键.类型七、点坐标的规律7.如图,每个小方格边长为1,已知点1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,6(2,2)A ,7(2,2)A -,8(2,2)--A ,…(1)将图中的平面直角坐标系补画完整;(2)按此规律,请直接写出点的坐标:9A ,10A ;(3)按此规律,则点2022A 的坐标为 .【答案】(1)见分析(2)(3,2)-,(3,3)(3)(506,506)【分析】(1)根据点的坐标确定坐标轴即可;(2)根据图示及坐标系各象限横纵坐标符号特点即可得出结果;(3)观察图象及各点的坐标特点得出A 4n +2(n +1,n +1),再由2022=4×505+2,即可确定点的坐标.(1)解:根据题意补画得平面直角坐标系如图所示:(2)根据图示坐标系各象限横纵坐标符号特点可得:A 9(3,-2),A 10(3,3); (3)观察图形发现,下标为4n +2的点落在第一象限的对角线上,∴A 2(1,1), A 6(2,2),∴A 4n +2(n +1,n +1),∴2022=4×505+2,∴A 2022(506,506),故答案为:(506,506).【点拨】题目主要考查坐标系中点的特点,确定坐标系等,理解题意,确定坐标系中点的坐标变化规律是解题关键.举一反三:【变式1】在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (______,______),8A (______,______);(2)写出点4n A 的坐标(n 是正整数)4n A (______,______);(3)求出2022A 的坐标.【答案】(1) 2,0,4,0(2) 2,0n (3) ()1011,1【分析】(1)观察图形,即可求解;(2)观察图形,由(1)发现规律,即可求解;(3)由(1)发现规律:44142(2,0),(2,1),(21,1)n n n A n A n A n +++,即可求解.解:(1)观察图形得∴12834567(0,1),(1,1),(1,0),(2,0),(2,1),(3,1),(3,0),(4,0)A A A A A A A A ,故答案为:2,0,4,0;(2)由(1)发现规律:4(2,0)n A n ,故答案为:2,0n ;(3)解:由(1)发现规律:44142(2,0),(2,1),(21,1)n n n A n A n A n +++,∴202245052=⨯+,∴2022A 的坐标为()20221011,1A .【点拨】本题主要考查规律型:点的坐标,读懂题意,准确找出点的坐标规律是解答此题的关键.【变式2】如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,1A 的坐标为()2,2,2A 的坐标为()5,2.(1)3A 的坐标为______,n A 的坐标为______(用含n 的代数式表示);(2)若护栏长为2020,则需要小正方形______个,大正方形______个.【答案】(1)(8,2);(3n ﹣1,2)(2)674;673【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A 1,A 2,A 3,…,An 各点的纵坐标均为2,横坐标依次比前一个增加3,继而即可求解;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020包含多少这样的长度,进而便可求出结果.解:(1)∴A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,An 各点的纵坐标均为2,∴小正方形的边长为1,∴A 1,A 2,A 3,…,An 各点的横坐标依次比前一个增加3,∴A 3(5+3,2),An (233...3++++,2),即A 3(8,2),An (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)由已知可得,所有小正方形和大正方形之间的直角三角形是全等的等腰直角三角形 ∴直角三角形的直角边长等于小正方形边长,长度是1,∴一个小正方形与一个大正方形所构成的护栏长度:1+1+1=3,∴2020÷3=673…1,∴需要小正方形673+1=674(个),大正方形673个.故答案为:674;673.【点拨】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。
北师大版八年级数学上册:3.2 《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的定义、特点以及坐标轴上的点的坐标特征。
通过本节课的学习,学生能够理解坐标系在数学和物理中的重要性,为后续函数、几何等知识的学习打下基础。
二. 学情分析学生在七年级已经学习了点的坐标,对坐标有一定的认识。
但他们对平面直角坐标系的理解还不够深入,需要通过本节课的学习进一步巩固和提高。
此外,学生需要掌握如何在平面直角坐标系中表示点、直线和图形,以及如何利用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义和特点,掌握坐标轴上的点的坐标特征,学会在平面直角坐标系中表示点、直线和图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:感受数学与现实生活的联系,体会数学学习的乐趣,提高学生对数学的兴趣。
四. 教学重难点1.重点:平面直角坐标系的定义、特点和坐标轴上的点的坐标特征。
2.难点:如何在平面直角坐标系中表示点、直线和图形,以及利用坐标系解决实际问题。
五. 教学方法采用讲授法、问答法、自主探究法、合作交流法等教学方法,引导学生观察、操作、思考、交流,从而达到理解平面直角坐标系的目的。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔、坐标轴模型等。
2.学生准备:笔记本、彩笔、剪刀、胶水等。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾七年级学过的点的坐标知识,为新课的学习做好铺垫。
例如:“同学们,你们还记得点的坐标吗?在坐标系中,如何表示一个点的位置?”呈现(10分钟)1.教师通过PPT展示平面直角坐标系的定义和特点,引导学生理解新知识。
2.教师讲解坐标轴上的点的坐标特征,如x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
操练(10分钟)1.学生自主探究:在平面直角坐标系中表示点、直线和图形。
第1章 平面直角坐标系中的直线(基础、常考、易错、压轴)分类专项训练【基础】一、单选题1.(2022秋·上海闵行·10y --=与直线0x -=的夹角为( ) A .π6 B .π3 C .π2 D .5π62.(2022秋·上海浦东新·高二上海市进才中学校考期末)过点(5,7)P -,倾斜角为135︒的直线方程为( ) A .120x y -+=B .20x y +-=C .120x y +-=D .20x y -+= 二、填空题3.(2022秋·上海闵行·高二闵行中学校考期末)直线20x y -+=的倾斜角为______.4.(2022秋·上海金山·高二上海市金山中学校考期末)已知O 为坐标原点,在直线(4)y k x =-上存在点P ,使得||2OP =,则k 的取值范围为__.5.(2022秋·上海闵行·高二上海市七宝中学校考期末)已知直线l 经过点()2,3A -,且它的倾斜角等于直线y x =的倾斜角的2倍,则直线l 的方程为 _________ .6.(2022秋·上海静安·高二校考期末)直线210x y ++=的倾斜角为______.7.(2023秋·上海嘉定·高二上海市育才中学校考期末)过点()1,2A 且与直线2310x y -+=平行的直线方程为______.(用一般式表示)8.(2023秋·上海奉贤·高二校考期末)过点(3,4)且与直线320x y -+=平行的直线的方程是___________. 9.(2023秋·上海长宁·高二上海市延安中学校考期末)两条平行直线4350x y -+=和4350x y --=的距离为______.10.(2022秋·上海普陀·高二曹杨二中校考期末)若直线l 的一个法向量为(-,则过原点的直线l 的方程为______.11.(2022秋·上海奉贤·高二校考阶段练习)直线10x +=10y ++=的夹角为_________12.(2022春·上海闵行·高二校考期末)经过点(0,0)和的直线的斜率为______.13.(2022秋·上海奉贤·高二校考阶段练习)过点()2,3-且与直线210x y ++=垂直的直线l 的方程是________.14.(2022秋·上海普陀·高二曹杨二中校考阶段练习)若直线1:(1)10l a x y -+-=和直线2:620l x ay ++=平行,则=a ___________.三、解答题15.(2022春·上海杨浦·高二上海市杨浦高级中学校考阶段练习)如图,已知(6,63)A ,(0,0)B ,(12,0)C ,直线:(3)20l k x y k +--=.(1)证明直线l 经过某一定点,并求此定点坐标;(2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若(2,23)P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程.16.(2022春·上海杨浦·高二上海市杨浦高级中学校考阶段练习)分别求满足下列条件的直线的方程:(1)直线1l 过点(3,0)A ,且与直线250x y +-=垂直,求1l 的点法式方程;(2)直线2l 过点(5,4)B 和(3,6)C -,求2l 的两点式方程;(3)直线31y =-的倾斜角为α,另一直线3l 的倾斜角2βα=,且过点(2,1)M -,求3l 的点斜式方程; (4)直线4l 过点(2,3)P -,且在两坐标轴上的截距相等,求直线4l 的一般式方程.17.(2022春·上海杨浦·高二上海市杨浦高级中学校考阶段练习)已知直线l 经过点(2,1)C ,且与x 轴、y 轴的正半轴分别交于点A 、点B ,O 是坐标原点.(1)当OAB 的面积最小时,求直线l 的一般式方程;(2)当||||CA CB ⋅取最小值时,求直线l 的一般式方程,并求此最小值.18.(2023秋·上海嘉定·高二上海市育才中学校考期末)已知()1,3A ,()5,7B(1)求线段AB 垂直平分线所在直线方程(2)若直线l 过()1,0-,且A 、B 到直线l 距离相等,求l 方程【常考】一.选择题(共2小题)1.(2021•松江区二模)经过点(1,1),且方向向量为(1,2)的直线方程是( )A .2x ﹣y ﹣1=0B .2x +y ﹣3=0C .x ﹣2y +1=0D .x +2y ﹣3=02.(2021•嘉定区三模)已知直角坐标平面上两条直线方程分别为l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0,那么“=0是“两直线l 1,l 2平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二.填空题(共7小题)3.(2020秋•浦东新区期末)直线l :x ﹣y +1=0的倾斜角是 . 4.(2021秋•徐汇区校级期末)直线的倾斜角是 .5.(2021春•徐汇区校级期中)直线(t为参数)的斜率为.6.(2021秋•嘉定区校级期末)点(1,1)到直线x+y+1=0的距离为.7.(2021•奉贤区校级二模)点(0,﹣1)到直线y=k(x+1)距离的最大值为.8.(2021秋•青浦区校级月考)已知点A(﹣3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的倾斜角的取值范围.9.(2020秋•杨浦区校级月考)点(5,2)到直线(m﹣1)x+(2m﹣1)y=m﹣5的距离的最大值为.三.解答题(共5小题)10.(2022春•黄浦区校级月考)已知△ABC的顶点A(4,2),AB边上的中线CM所在直线方程为x﹣y﹣3=0,AC边上的高BH所在直线方程为x+2y﹣2=0.求:(1)顶点C的坐标;(2)求点B到直线AC的距离.11.(2020秋•嘉定区期中)过点P(4,1)作直线l分别交x轴,y轴正半轴于A,B两点,O为坐标原点.(Ⅰ)当△AOB面积最小时,求直线l的方程;(Ⅱ)当|OA|+|OB|取最小值时,求直线l的方程.12.(2021秋•浦东新区校级月考)已知点A(1,3)、B(3,1)、C(﹣1,0),求:(1)BC边上的中线所在直线的方程;(2)BC边上的高所在的直线的方程;(3)三角形ABC的面积.13.(2021秋•青浦区校级月考)在平面直角坐标系xOy中,已知△ABC的三个顶点A(m,n),B(2,1),C(﹣2,3).(1)求BC边所在直线的方程;(2)BC边上中线AD的方程为2x﹣3y+6=0,且△ABC的面积等于7,求点A的坐标.14.(2020秋•杨浦区校级期中)已知直线l过定点P(﹣2,1),且交x轴负半轴于点A、交y轴正半轴于点B,点O为坐标原点.(1)若△AOB的面积为4,求直线l的方程;(2)求|OA|+|OB|的最小值,并求此时直线l的方程;(3)求|P A|•|PB|的最小值,并求此时直线l的方程.【易错】一.选择题(共3小题)1.(2021秋•浦东新区校级月考)已知下列命题:①直线的倾斜角为α,则此直线的斜率为tanα;②直线的斜率为tanα,则直线的倾斜角为α;③直线的倾斜角为α,则sinα>0.上述命题中不正确的是()A.①②B.①③C.②③D.①②③2.(2020•上海自主招生)已知直线m:y=x cosα和n:3x+y=c,则()A.m和n可能重合B.m和n不可能垂直C.存在直线m上一点P,以P为中心旋转后与n重合D.以上都不对3.(2020秋•金山区校级期中)若直线l1:x+ay+6=0与l2:(a﹣2)x+3y+2a=0平行,则l1与l2间的距离为()A.B.C.D.二.填空题(共15小题)4.(2020秋•浦东新区校级期中)两平行线x+y+1=0和x+y+3=0的距离等于.5.(2021秋•浦东新区校级期末)直线x﹣y+1=0的倾斜角为.6.(2021•上海模拟)直线x=3y+1的一个法向量可以是.7.(2020秋•金山区校级期中)点(﹣2,t)在直线2x﹣3y+6=0的上方,则t的取值范围是.8.(2020秋•徐汇区校级期中)已知点M(a,b)在直线3x+4y=15上,则的最小值为.9.(2020秋•金山区校级期中)关于x、y的方程组有无穷多组解,实数m=.10.(2020秋•嘉定区期中)直线l1:2x+(m+1)y+4=0与直线l2:mx+3y﹣2=0平行,则m的值为.11.(2021秋•嘉定区校级期末)已知直线l1:(a﹣3)x+(4﹣a)y+1=0与l2:2(a﹣3)x﹣2y+3=0平行,则a=.12.(2022春•杨浦区校级期中)已知直线l1:kx+(1﹣k)y﹣3=0,l2:(k﹣1)x+(2k+3)y﹣2=0,若l1⊥l2,则k=.13.(2021秋•浦东新区校级期末)若直线l经过点(a﹣2,﹣1)和(﹣a﹣2,1),且与经过点(﹣2,1),斜率为﹣的直线垂直,则实数a的值为.14.(2020秋•杨浦区校级期中)若α∈R,则直线2x+3y•cosα+1=0的倾斜角的范围是.15.(2020•上海自主招生)△ABC的顶点坐标分别为A(3,4),B(6,0),C(﹣5,﹣2),则角A的平分线所在的直线方程为.16.(2020秋•杨浦区校级月考)已知直线2x+y+2+λ(2﹣y)=0与两坐标轴围成一个三角形,该三角形的面积记为S(λ),当λ∈(1,+∞)时,S(λ)的最小值是.17.(2020秋•黄浦区校级期中)已知三条直线的方程分别为y=0,,,那么到三条直线的距离相等的点的坐标为.18.(2022秋•闵行区校级月考)在直角坐标平面xOy中,已知两定点F1(﹣2,0)与F2(2,0)位于动直线l:ax+by+c=0的同侧,设集合P={l|点F1与点F2到直线l的距离之差等于},Q={(x,y)|x2+y2≤2,x,y∈R},记S={(x,y)|(x,y)∉l,l∈P},T={(x,y)|(x,y)∈Q∩S},则由T中的所有点所组成的图形的面积是三.解答题(共4小题)19.(2022秋•宝山区校级期中)直线l过点P(3,2)且与x轴、y轴正半轴分别交于A、B两点.(1)若直线l与2x+3y﹣2=0法向量平行,写出直线l的方程;(2)求△AOB面积的最小值;(3)如图,若点P分向量AB所成的比的值为2,过点P作平行于x轴的直线交y轴于点M,动点E、F 分别在线段MP和OA上,若直线EF平分直角梯形OAPM的面积,求证:直线EF必过一定点,并求出该定点坐标.20.(2020秋•金山区校级期中)在平面直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;(2)当△AOB的面积取最小值时,求直线AB的方程;(3)当|P A|•|PB|取最小值时,求直线AB的方程.21.(2020秋•徐汇区期中)已知△ABC的三个顶点A(m,n)、B(2,1)、C(﹣2,3).(1)求BC边所在直线的方程;(2)BC边上中线AD的方程为2x﹣3y+6=0,且S△ABC=7,求点A的坐标.22.(2020秋•浦东新区校级月考)已知点A(1,2)、B(5,﹣1),且A,B两点到直线l的距离都为2,求直线l的方程.【压轴】一.填空题(共4小题)1.(2021秋•浦东新区校级月考)直线系A:(x﹣3)cosα+y sinα=2中,能组成的正三角形的面积等于.2.(2020秋•宝山区校级期中)已知点A为上一点,B为y轴上动点,C为上动点(A,B,C三点不共线),则△ABC周长的最小值为.3.(2020春•虹口区期末)(A组题)已知点P(﹣1,0),圆(x﹣1)2+y2=9上的两个点A(x1,y1)、B(x2,y2)满足(λ∈R),则的最大值为.4.(2020秋•徐汇区校级期中)在平面直角坐标系内,设M(x1,y1)、N(x2,y2)为不同的两点,直线l 的方程为ax+by+c=0,设.有下列四个说法:①存在实数δ,使点N在直线l上;②若δ=1,则过M、N两点的直线与直线l平行;③若δ=﹣1,则直线l经过线段MN的中点;④若δ>1,则点M、N在直线l的同侧,且直线l与线段MN的延长线相交.上述说法中,所有正确说法的序号是.。
第1章坐标平面上的直线(基础30题专练)一、单选题1.(2022·上海·高三专题练习)过点(1,2)且与原点距离最大的直线方程是( )A .250x y +-=B .240x y +-=C .370x y +-=D .230x y -+=2.(2020·上海市金山中学高二期中)若直线1:60l x ay ++=与2:(2)320l a x y a -++=平行,则1l 与2l 间的距离为( )A B .3C D 3.(2021·上海·高二专题练习)在平面直角坐标系xOy 中,已知过点()2,A m -和(),4B m 的直线与直线210x y +-=平行,则m 的值为( )A .0B .10C .2D .8-4.(2021·上海徐汇·高二期末)设0a <且b <0,则直线bx ay ab +=的倾斜角为( )A .arctan b a ⎛⎫- ⎪⎝⎭B .arctan ⎛⎫- ⎪⎝⎭a bC .arctan b aπ-D .arctan a bπ-5.(2021·上海·华师大二附中高二阶段练习)已知下列命题:①直线的倾斜角为α,则此直线的斜率为tan α;②直线的斜率为tan α,则直线的倾斜角为α;③直线的倾斜角为α,则sin 0α>.上述命题中不正确的是( ) A .①②B .①③C .②③D .①②③6.(2021·上海青浦·高二期末)已知直线l 1∶x sin a +y =0与直线l 2∶3x +y +c =0,则下列结论中正确的是( ) A .直线l 1与直线l 2可能重合 B .直线l 1与直线l 2可能垂直 C .直线l 1与直线l 2可能平行D .存在直线l 1外一点P ,直线l 1绕点P 旋转后可与直线l 2重合7.(2021·上海·高二专题练习)若直线0ax by c 的一个法向量(3,1)n =-,则该直线的倾斜角为( ) A .6πB .3π C .23π D .56π 8.(2020·上海市奉贤区奉城高级中学高二阶段练习)下列方程能表示如图所示的直线的是( )A 0=B .220x y -=C .0x y -=D .220x y -=9.(2020·上海市嘉定区第一中学高二期中)对于直线1:0(0)l ax ay a a+-=≠,下列说法不正确的是( )A .无论a 如何变化,直线l 的倾斜角的大小不变B .无论a 如何变化,直线l 一定不经过第三象限C .无论a 如何变化,直线l 必经过第一、二、三象限D .当a 取不同数值时,可得到一组平行直线10.(2020·上海·复旦附中高二期中)已知直线:210l kx y k +--=与两坐标轴分别交于,A B 两点,如果△AOB 的面积为4,那么满足要求的直线l 的条数是( ).A .1B .2C .3D .4二、填空题11.(2021·上海市奉贤中学高二阶段练习)直线310x y ++=的倾斜角为___________ 12.(2021·上海市洋泾中学高二阶段练习)直线230x y +-=与直线30x y -=的夹角大小为____________(用反三角表示).13.(2019·上海市西南位育中学高二期中)已知直线l 的法向量(3,1)n =,若l 与直线10x ay -+=的夹角为6π,则实数=a ___________.14.(2021·上海·复旦附中青浦分校高二阶段练习)过点A (-1,5)且以n =(2, 1)为法向量的直线方程为__________15.(2021·上海市大同中学高三阶段练习)若恰有三组不全为0的实数对(a ,b )满足关系式3141a b ++==t 的所有可能的值为___________.16.(2021·上海市奉贤中学高二阶段练习)将直线l :21y x =+绕其与y 轴的交点M 逆时针旋转π4得直线'l ,则'l 与两坐标轴所围成的三角形面积大小为___________.17.(2021·上海·闵行中学高二期中)若直线2y x =-的倾斜角为α,则tan α的值为______.18.(2022·上海·高三专题练习)已知实数,x y 满足22320x y x y --+-=,则22x y +的最小值为________________三、解答题19.(2021·上海·高二专题练习)已知直线l 与直线250x y +-=平行,并且直线l 与两坐标轴围成的三角形的面积为4,求直线l 的一般式方程.20.(2021·上海·高二专题练习)当m 为何值时,直线(3)553m x y m ++=-与直线2(6)8x m y ++=.(1)相交; (2)垂直; (3)平行; (4)重合.21.(2020·上海中学高二期中)已知直线l 经过原点,且与直线1y +的夹角为30,求直线l 的方程.22.(2020·上海·上外浦东附中高二阶段练习)已知两条直线()1:120l t x y t -+-=和2:40l x ty t ++-=,当t 为何值时,1l 与2l :(1)平行? (2)重合? (3)垂直?23.(2020·上海师大附中高二期中)为了绿化城市,准备在如图所示的区域ABCDE 内修建一个矩形PQRD 的草坪,其中90AED EDC DCB ︒∠=∠=∠=,点Q 在AB 上,且//PQ CD ,QR CD ⊥,经测量70m BC =,80m CD =,100m DE =,60m AE =.(1)如图建立直角坐标系,求线段AB 所在直线的方程;(2)在(1)的基础上,应如何设计才能使草坪的占地面积最大,确定此时点Q 的坐标并求出此最大面积(精确到21m )24.(2018·上海市奉贤区奉城高级中学高二期中)已知直线1:42l mx y m +=+和直线2:l x my m +=,试确定m 的值,使得:(1)1l 与2l 相交; (2)1l 与2l 平行; (3)1l 与2l 垂直.25.(2020·上海市金山中学高二期中)矩形ABCD 的两条对角线相交于点(2,0),M AB 边所在直线的方程为360x y --=,点(1,1)T -在AD 边所在的直线上. (1)求AD 边所在直线的方程;(2)若直线:10l ax y b +++=平分矩形ABCD 的面积,求出原点与(,)a b 距离的最小值.26.(2020·上海市嘉定区第一中学高二阶段练习),m n 为已知实数, 直线1l 的方程为(1)+280m x my m --=,直线2l 的方程为(21)+440n x ny n --=.(1)讨论直线1l 与2l 的位置关系;(2)当直线1l 与2l 平行时,求这两条平行线的距离的最大值.27.(2020·上海市进才中学高二期中)已知xOy 平面上的直线:120l kx y k -++=,k ∈R .(1)直线l 恒过定点的坐标;(2)直线l 与x 轴负半轴和y 轴正半轴坐标轴围成的三角形面积为92,求k 的值.28.(2020·上海市建平中学高二期中)已知△ABC 的三个顶点分别是(1,1)A ,(2,3)B -,(3,4)C .(1)求BC 边上的高所在直线的点法向式方程;(2)如图,若四边形ABCD 是平行四边形,求点D 的坐标.29.(2020·上海·华师大二附中高二阶段练习)已知直线l 的方程为210x y -+=. (1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求过l 与1l 的交点B ,且倾斜角是直线l 的一半的直线2l 的方程.30.(2019·上海市进才中学高二阶段练习)已知两直线1:2(3)10l mx m y +-+=,2:220l x my m ++=,当m 为何值时,1l 和2l(1)平行; (2)垂直?。
第1章 平面直角坐标系中的直线【单元提升卷】考生注意:1.本试卷含三个大题,共21题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、填空题1.已知直线l________.2.直线l 过()3,1A -,且l 的一个法向量()3,2n =,则直线l 的点法向式方程为___________.3.已知直线l 经过点3,0和点()3,4-,若点(),x y 在直线l 上移动且在第一象限内,则xy 的最大值为_________ .4.已知直线l 1:ax +4y -2=0与直线l 2:2x -5y +b =0互相垂直,垂足为(1,c),则a +b +c 的值为________.5.已知点(2,3)A ,若坐标轴上存在一点P ,使直线PA 的倾斜角为120︒,则P 点的坐标为___________.6.过点()3,1P ,并且在两轴上的截距相等的直线方程是______.7.若直线1:4200l ax y +-=与2:0l x ay b +-=重合,则正数a 、b 的和为______.8.直线10x +=与直线310x -=的夹角的大小为____________.9.若点(),x y 在直线34250x y ++=上移动,则22x y +的最小值为______. 10.已知点()()2,3,3,2P Q -,直线20ax y ++=与线段PQ 相交,则实数a 的取值范围是____;11.过点()16,作直线l ,若直线l 经过点()(),0,0,a b ,且a N *∈,b N *∈,则可作直线l 的条数为__________.12.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离为d =已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若12d d =,则直线12PP 与直线l 平行;②若12d d =-,则直线12PP 与直线l 垂直;③若120d d ⋅>,则直线12PP 与直线l 平行或相交;④若120d d ⋅<,则直线12PP 与直线l 相交,其中所有正确命题的序号是__________.二、单选题13.直线1:0l ax y b -+=与()2:00l bx y a ab +-=≠的图像可能是( )A .B .C .D .14.已知直线220x y +-=和10mx y -+=的夹角为4π,则实数m 的值是( ) A .13-或3- B .13或3 C .13-或3 D .13或3- 15.“3a =”是“直线230ax y a ++=和直线3(1)(7)0x a y a +---=平行且不重合”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.已知直线():,0l f x y =,()00,P x y 是直线l 外一点,那么直线()()00,,0f x y f x y -=( )A .过点P 且与直线l 斜交B .过点P 且与直线l 重合C .过点P 且与直线l 平行D .过点P 且与直线l 垂直三、解答题17.过点(0,1)P -的直线l 与以(3,2)A 、(2,3)B -为端点的线段AB 有交点,求直线l 的倾斜角α的取值范围.18.直线l 过点(2,3)P -,且与两轴围成的三角形面积为4,求直线l 的方程.19.已知点A 是x 轴上的动点,一条直线过点()2,3M 且垂直于MA 并交y 轴于点B ,过A ,B 两点分别作x 轴,y 轴的垂线并交于点P ,求点(),P x y 满足的关系式.20.如图,在一段直的河岸同侧有A 、B 两个村庄,相距5km ,它们距河岸的距离分别为3km 、6km .现在要在河边修一抽水站并铺设输水管道,同时向两个村庄供水.如果预计修建抽水站需8.25万元(含设备购置费和人工费),铺设输水管每米需用24.5元(含人工费和材料费).现由镇政府拨款30万元,问A 、B 两村还需共同自筹资金多少才能完成此项工程?(精确到100元)8.06=9.85 3.28= 6.57=)21.已知三条直线1l:mx-y+m=0,2l:x+my-m(m+1)=0,3l:(m+1)x-y+(m+1)=0,它们围成△ABC.(1)求证:不论m取何值时,△ABC中总有一个顶点为定点;(2)当m取何值时,△ABC的面积取最值?并求出最值.。
湘教版数学八年级下册第三章《图形与坐标》教学设计一. 教材分析湘教版数学八年级下册第三章《图形与坐标》主要内容包括坐标系的建立、坐标轴上的点的坐标、坐标平面内的点的坐标、用坐标表示直线上的点、用坐标表示多边形等。
本章内容是学生进一步理解数学与现实生活的联系,培养学生的空间观念和几何思维的重要章节。
二. 学情分析学生在学习本章内容之前,已经学习了平面几何的基本概念和性质,对几何图形的认知有了一定的基础。
但部分学生对坐标系的理解和运用可能还存在困难,因此,在教学过程中,需要关注学生的学习差异,针对性地进行教学。
三. 教学目标1.理解坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的概念。
2.学会用坐标表示直线上的点和多边形,培养学生的空间观念和几何思维。
3.培养学生运用坐标解决实际问题的能力。
四. 教学重难点1.坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的理解。
2.用坐标表示直线上的点和多边形的运用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、思考、实践等方式掌握坐标系的相关知识和运用。
六. 教学准备1.教学PPT、教学案例、练习题等教学资源。
2.坐标系模型、几何图形等教具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入坐标系的概念,如:“如何在平面直角坐标系中表示两个城市A和B的位置?”引发学生对坐标系的思考。
2.呈现(10分钟)呈现坐标系的建立过程,引导学生观察坐标轴上的点的坐标、坐标平面内的点的坐标,让学生通过观察、思考,理解坐标系的含义。
3.操练(10分钟)让学生分组讨论,用坐标表示直线上的点和多边形,并选取部分学生进行解答展示,教师点评并指导。
4.巩固(10分钟)针对本节课的重点知识,设计一些练习题,让学生独立完成,教师及时批改并讲解。
5.拓展(10分钟)让学生运用坐标解决实际问题,如:“某商品的原价为100元,现在进行打折促销,打折后的价格是多少?”教师引导学生思考,并给予解答指导。
第27讲 《反比例函数》培优训练6.2 反比例函数图像和性质【基础知识精讲】反比例函数y=kx (k ≠0)中k 的几何意义: 过函数 y=kx(k ≠0)的图像上任一点),(y x p 作PM ⊥x 轴,PN ⊥y 轴,所得矩形PMON 的面积S=∣xy ∣=∣k ∣;所得△POM 的面积S=21∣k ∣。
【例题巧解点拨】例1.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图1所示,则四边形ABCD 为_______.图1 图2 图3练习:如图2,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_____________________.例2.如图3,两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2018,在反比例函数y=6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2018,纵坐标分别是1,3,•5•……,•共2018个连续奇数,过点P 1,P 2,P 3,…,P 2018分别作y 轴的平行线与y=3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2018(x 2018,y 2018),则y 2018=________.练习:1、如图:函数y=-kx (k ≠0)与y=-4x的图象交于A 、 B 两点,过点A 作AC ⊥y 轴,•垂足为点C ,则△BOC 的面积为________.2、如图,正比例函数y=3x 的图象与反比例函数y=kx(k>0)的图象交于点A ,若 取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20=_________.例3.如图所示,直线122y x =+分别交x 轴、y 轴于A ,C 两点,P 是该直线上在第一象 限内的一 点,PB ⊥x 轴于B ,9ABPS =.(1)求P 点坐标; (2)双曲线ky x=经过点P ,能否在双曲线上PB 的右侧求作一点R ,作RT ⊥x 轴于T ,使△BRT 与△AOC 相似? 如能,求出点R 坐标;若不能,说明理由。
第27讲 坐标平面上的直线(1)
班级_________姓名_________学号_________
一、填空题:
1、直线l 过点(1,1),并且l 的方向向量a 与(2,1)b = 满足0,a b ⋅=
则直线l 的方程为______
2、经过点A(-3,4),且在两坐标轴上的截距相等的直线方程为
3、直线04)9()352(22=+----y m x m m 的倾斜角为
4
π
,则m 的值是 .
4、正三角形OBC 中,若顶点O (0,0)、B (3,1),则顶点C 的坐标为
5、异于原点O 的两点A 、B 的坐标分别为(1x ,1y )、(2x ,2y ),则“
2
121y y x x =-1”
是“OA ⊥OB ”的 条件。
6、已知A (3,3)、B (-1,5),直线y =a x +1与线段AB 有公共点,则实数a 的取值范围是
7、不论m 为何实数,直线012)1(=++--m y x m 恒过定点 8、点)1,1(A 到直线02sin cos =-+θθy x 的距离的最大值是 。
9、若直线l 经过原点,且与直线2y =+的夹角为30
,则直线l 的方程为
10、直线023cos =++y x α的倾斜角的取值范围是
二、选择题: 11、直线
3x +
4
y
=1的倾斜角是 ( )
A.arctan 3
4 B. π+ arctan 3
4 C. π-arctan
3
4 D. π-arctan (-
3
4)
12、若A(1,2),B(-2,3),C(4,y)在同一条直线上,则y 的值是 ( ) A.
2
1 B.
2
3 C.1 D.-1
13、设a 、b 、c 分别是ΔABC 中∠A 、∠B 、∠C 所对边的边长,则直线0
sin =++c ay A x 与0sin sin =+-C B y bx 的位置关系是 ( ) (A )平行; (B )重合; (C )垂直; (D )相交但不垂直.
14、若点(4,a )到直线4x +3y =1的距离不大于3,则a 的取值范围是( ) (A )[-10,0]; (B )[0,10]; (C )[3
1,
13
3]; (D )(-∞,0]∪[10,+∞).
(三)解答题
15、若三条直线10x y ++=,280x y -+=和350ax y +-=只有两个不同的交点,
求实数a 的值。
16. 已知A (0,3),B (-1,0),C (3,0)求D 点的坐标,使四边形ABCD 是等腰梯形。
17. 直线1l 过点()0 5, A ,2l 过点()1 0,B ,12//l l ,且1l 与2l 之间的距离是5,求1l 和2l 的方程。
18.已知△ABC的顶点A(3,-1),AB边上的中线所在直线的方程为0
x,
-
+y
7
19
3=
AC边上的高所在直线的方程为0
-y
x.求BC边所在直线的方程.
-
15
5
6=
19、某房地产公司要在荒地上划出一块长方形地面(不改变方位)建造一栋八层公寓,问如何设计才能使面积最大?并求面积的最大值(精确到1m2)。