坐标平面上的直线知识点总结
- 格式:doc
- 大小:177.00 KB
- 文档页数:2
上海高二数学平面直角坐标系中的直线专题一、概述在高二数学学习中,平面直角坐标系中的直线是一个重要的基础知识点。
通过学习直线的相关内容,可以帮助学生深入理解数学中的几何关系,提高数学分析和解决问题的能力。
上海高二数学的教学大纲中,对平面直角坐标系中的直线进行了系统的布置和安排,包括直线的方程、性质、斜率、截距等内容。
本文将对上海高二数学中关于平面直角坐标系中的直线专题进行全面的介绍和总结。
二、直线的方程1. 直线的一般方程直线的一般方程可以写为Ax+By+C=0,其中A、B、C是常数且A和B不同时为0。
在平面直角坐标系中,直线的一般方程对应于一条直线,通过解一般方程可以得到直线的斜率和截距,进而分析直线的特性和性质。
2. 直线的斜截式方程直线的斜截式方程可以写为y=kx+b,其中k是斜率,b是截距。
斜截式方程是直线方程的一种常见形式,通过斜截式方程可以方便地分析直线的斜率和截距,从而得出直线的特性和性质。
3. 直线的点斜式方程直线的点斜式方程可以写为y-y₁=k(x-x₁),其中(k为斜率,(x₁,y₁)为直线上的一点。
点斜式方程是直线方程的一种便利形式,通过点斜式方程可以轻松求出直线的斜率和经过的点,进而分析直线的特性和性质。
三、直线的性质1. 相交直线两条不平行的直线在平面直角坐标系中相交于一点,通过分析相交直线的斜率和截距可以得出它们的相交关系和交点的坐标。
2. 平行直线平行直线具有相同的斜率但不同的截距,在平面直角坐标系中平行直线之间的距离可以通过截距的差值来表达。
通过研究平行直线的性质可以帮助学生更好地理解直线在坐标系中的位置关系。
3. 垂直直线垂直直线的斜率之间满足互为倒数的关系,两条直线的斜率之积为-1。
通过研究垂直直线的特性,可以帮助学生理解直线之间的垂直关系,从而在几何分析中有更深入的应用。
四、直线的应用1. 直线的方程与图像通过直线的方程可以得到直线在平面直角坐标系中的图像,通过分析直线的方程可以得出它在坐标系中的位置和特性,帮助学生更好地理解直线和几何关系。
七年级下册数学《平面直角坐标系》直线
方程知识点整理
本文档旨在整理七年级下册数学《平面直角坐标系》中与直线方程相关的知识点,以便帮助学生更好地研究和理解这一内容。
1. 平面直角坐标系简介
- 平面直角坐标系是由横轴(x轴)和纵轴(y轴)组成的二维坐标系统。
- 坐标系的原点表示为O,横轴正方向为正向,纵轴正方向也为正向。
2. 直线的斜率
- 斜率表示直线的倾斜程度,用k表示。
- 直线的斜率k可以通过两点间的坐标计算得到,公式为 k = (y2 - y1) / (x2 - x1)。
3. 直线的点斜式方程
- 直线的点斜式方程形式为 y - y1 = k(x - x1)。
- 其中,(x1, y1)是直线上的一个已知点,k是直线的斜率。
4. 直线的截距式方程
- 直线的截距式方程形式为 y = kx + b。
- 其中,k是直线的斜率,b是直线与纵轴的交点的纵坐标。
5. 直线的一般式方程
- 直线的一般式方程形式为 Ax + By + C = 0。
- 其中,A、B、C是常数,A和B不能同时为0。
6. 解直线方程的方法
- 通过已知直线上的一点和斜率计算直线方程。
- 通过已知直线上的两个点计算直线方程。
- 通过已知直线的斜率和截距计算直线方程。
7. 直线的特殊情况
- 斜率为0的直线为水平直线。
- 斜率不存在的直线为竖直直线。
以上是七年级下册数学《平面直角坐标系》中与直线方程相关的知识点整理,希望对学生们的研究有所帮助。
参考资料:
- [《平面直角坐标系》教材] - [《数学教学参考资料》]。
平面直角坐标系与直线的表示和性质一、引言在数学中,平面直角坐标系是一种重要的工具,用于描述平面上的点和图形。
直线是几何学中的一种基本图形,其在平面直角坐标系中的表示和性质也是数学学习的重点之一。
本文将详细介绍平面直角坐标系与直线的表示方法以及它们的性质。
二、平面直角坐标系的表示方法平面直角坐标系由两个互相垂直的坐标轴组成,分别称为x轴和y 轴。
我们可以通过确定原点和确定单位长度来建立一个平面直角坐标系。
(1)原点的确定在平面直角坐标系中,原点被定义为坐标轴的交点,通常用字母O 表示。
(2)单位长度的确定为了方便计算,确定单位长度是很重要的。
在平面直角坐标系中,我们通常将x轴的一个单位长度与y轴的一个单位长度视为相等,可以叫做单位长度。
可使用尺子等工具或规定一个固定的长度来确定。
(3)坐标的表示在平面直角坐标系中,每个点都有唯一的坐标,它由x轴上的数和y轴上的数组成,通常用(x, y)表示。
其中,x表示点在x轴上的位置,y表示点在y轴上的位置。
三、直线的表示方法直线是平面上两点的连结,它在平面直角坐标系中的表示与斜率和截距有关。
(1)斜率直线的斜率表示了直线的倾斜程度。
在平面直角坐标系中,直线的斜率可以用以下公式表示:斜率m = Δy / Δx其中,Δy表示y轴的变化量,Δx表示x轴的变化量。
(2)截距直线在坐标轴上的交点被称为截距。
我们可以通过截距来确定直线与坐标轴的交点位置。
四、直线的性质直线有许多重要的性质,其中包括:(1)平行和垂直关系在平面直角坐标系中,两条直线平行的条件是它们具有相同的斜率。
而两条直线垂直的条件是它们的斜率互为相反数。
(2)斜率的影响直线的斜率对直线的倾斜程度有着重要的影响。
例如,当斜率为正时,直线向右上方倾斜;当斜率为负时,直线向右下方倾斜。
(3)截距的影响直线的截距可以确定直线与坐标轴的交点位置。
当直线与x轴相交时,其截距为 y=0;当直线与y轴相交时,其截距为 x=0。
平面直角坐标系知识点归纳1 、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2 、 坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对 ( a,b )一一对应;其中, a 为横坐标, b 为纵坐标坐标;3 、 x 轴上的点,纵坐标等于 0 ; y 轴上的点,横坐标等于0 ;Y坐标轴上的点 不属于 任何象限;b P(a,b)4 、四个象限的点的坐标具有如下特征:1象限横坐标 x纵坐标 y-3-2 -1 0 1ax-1 第一象限正 正 -2 第二象限负正-3第三象限 负 负 第四象限正负小结:( 1 )点 P ( x, y )所在的象限 横、纵坐标 x 、 y 的取值的正负性;( 2 )点 P ( x, y )所在的数轴横、纵坐标 x 、 y 中必有一数为零;y 5 、在平面直角坐标系中,已知点P (a,b) ,则a点 P 到 x 轴的距离为bP ( a, b )(1 ) b ; ( 2 )点 P 到 y 轴的距离为 a ;(3 ) 点 P 到原点 O 的距离为 PO =a 2b 2b6 、平行直线上的点的坐标特征:Oaxa) 在与 x 轴平行的直线上,所有点的纵坐标相等;YA B点 A 、 B 的纵坐标都等于 m ;mXb)在与 y 轴平行的直线上,所有点的横坐标相等;YC点 C 、 D 的横坐标都等于n ;nDX7 、对称点的坐标特征:a)点 P (m, n)关于x轴的对称点为P1(m, n),即横坐标不变,纵坐标互为相反数;b)点 P (m, n)关于y轴的对称点为P2( m, n),即纵坐标不变,横坐标互为相反数;c) 点 P (m, n)关于原点的对称点为P3 ( m, n) ,即横、纵坐标都互为相反数;y y yPn P2 n P n PO mX mmm XO m X OnP1n P3关于 x 轴对称关于 y 轴对称关于原点对称8 、两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P(m,n)在第一、三象限的角平分线上,则m n ,即横、纵坐标相等;b) 若点 P(m,n)在第二、四象限的角平分线上,则m n ,即横、纵坐标互为相反数;y yn P P nO m X m O X 在第一、三象限的角平分线上在第二、四象限的角平分线上基本练习:练习 1 :在平面直角坐标系中,已知点P(m 5,m 2 )在 x 轴上,则P点坐标为练习 2 :在平面直角坐标系中,点P(m2 2, 4 )一定在象限;练习3 P a 1, a29)在 x 轴的负半轴上,则P点坐标为;:已知点(练习 4 :已知 x 轴上一点A(3,0),y轴上一点B(0,b ),且 AB=5 ,则b的值为;练习 5 :点 M (2 ,- 3 )关于 x 轴的对称点 N 的坐标为;关于y轴的对称点 P 的坐标为;关于原点的对称点Q 的坐标为。
平面直角坐标系中的直线与方程在平面直角坐标系中,直线是一种基本的图形,其方程描述了直线的位置和特征。
本文将讨论直线在坐标系中的表达方式以及与之相关的方程。
1. 直线的一般方程形式一条直线可以由其上任意两点的坐标表示。
设直线上两点的坐标分别为(x₁, y₁)和(x₂, y₂),则直线的一般方程形式为:(y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)该方程用于表示直线上所有点的坐标关系,其中任意一点(x, y)满足该方程的条件。
2. 直线的斜截式方程直线的斜截式方程是一种常见的表示形式,其中直线的斜率和截距被用来描述直线的特征。
斜截式方程的形式为:y = mx + b其中m表示直线的斜率,b表示直线与y轴的截距。
根据直线的斜率和截距的不同取值,我们可以判断直线的倾斜方向和与坐标轴的交点情况。
3. 直线的点斜式方程直线的点斜式方程是另一种常见的表示形式,其利用直线上一点的坐标和直线的斜率来确定直线的方程。
点斜式方程的形式为:y - y₁ = m(x - x₁)其中(x₁, y₁)为直线上已知的一点,m为直线的斜率。
通过点斜式方程,我们可以直接得到直线的方程,并且了解直线的斜率和通过已知点的情况。
4. 直线的截距式方程直线的截距式方程也是一种常见的表示形式,其利用直线与x轴和y轴的截距来确定直线的方程。
截距式方程的形式为:x / a + y / b = 1其中a和b分别表示直线与x轴和y轴的截距。
通过截距式方程,我们可以了解直线与坐标轴的交点情况,并判断直线的方向和斜率。
总结:通过上述介绍,我们可以了解到直线在平面直角坐标系中的方程形式。
根据直线的特征和已知条件,我们可以选择适合的方程形式来表示直线,并准确描述直线的特征和位置。
在利用直线的方程求解问题时,我们可以根据问题给出的条件和需要求解的未知量,选择合适的方程形式进行计算和推导。
同时,我们也需要注意直线方程的约束条件,例如斜率为零的情况表示直线平行于坐标轴等。
初中数学《平面直角坐标》知识点平面直角坐标是数学中的一个重要概念,是指在平面上引入两条相互垂直的坐标轴,并以它们的交点作为原点,来描述平面上的点的位置。
平面直角坐标主要包括坐标轴、坐标、象限、距离等重要概念。
一、坐标轴坐标轴是平面直角坐标系中由两条相互垂直的数轴组成的直线。
其中,一条被称为x轴,另一条被称为y轴。
x轴和y轴的交点被设为原点O,即(0,0)。
x轴的正方向向右,负方向向左;y轴的正方向向上,负方向向下。
整个坐标平面被分成四个象限,分别是第一、第二、第三和第四象限。
二、坐标坐标是用数对表示平面上的点在x轴和y轴上的投影,一般用(x,y)表示。
其中,x表示点在x轴上的投影,y表示点在y轴上的投影。
例如,点A的坐标是(2,3),表示它在x轴上的投影是2,在y轴上的投影是3三、象限平面直角坐标系将整个平面分成了四个象限。
第一象限位于x轴的正半轴和y轴的正半轴之间;第二象限位于x轴的负半轴和y轴的正半轴之间;第三象限位于x轴的负半轴和y轴的负半轴之间;第四象限位于x轴的正半轴和y轴的负半轴之间。
各象限的特点如下:-第一象限中的点的x坐标和y坐标都是正数。
-第二象限中的点的x坐标是负数,y坐标是正数。
-第三象限中的点的x坐标和y坐标都是负数。
-第四象限中的点的x坐标是正数,y坐标是负数。
四、距离在平面直角坐标系中,可以通过坐标计算两点之间的距离。
设点A的坐标是(x1,y1),点B的坐标是(x2,y2),则点A和点B之间的距离可以通过勾股定理求得:AB=√((x2-x1)²+(y2-y1)²)五、线段的斜率直角坐标系中,可以通过斜率来描述线段的倾斜程度。
设线段的两个端点A和B的坐标分别为(x1,y1)和(x2,y2),则该线段的斜率可以通过下式计算得到:斜率k=(y2-y1)/(x2-x1)当斜率为正值时,表示线段向右上方倾斜;当斜率为负值时,表示线段向右下方倾斜;当斜率为零时,表示线段水平。
初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
平面直角坐标系知识点平面直角坐标系学问点第一篇1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做〔a,b〕。
2、平面直角坐标系:在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P〔a,b〕。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。
〔填“>〞、“<〞或“=〞〕8、点P〔a,b〕到x轴的距离是|b|,到y轴的距离是|a| 。
9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
10、点P〔2,3〕到x轴的距离是;到y轴的距离是;点P〔2,3〕关于x轴对称的点坐标为〔,〕;点P〔2,3〕关于y轴对称的点坐标为〔,〕。
11、假如两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;假如两点的纵坐标相同,则过这两点的'直线与x轴平行、与y轴垂直。
假如点P〔2,3〕、Q〔2,6〕,这两点横坐标相同,则PQ‖y轴,PQ⊥x轴;假如点P〔—1,2〕、Q〔4,2〕,这两点纵坐标相同,则PQ‖x轴,PQ⊥y轴。
高二上册数学直线知识点数学直线是高中数学内容中的重要部分,它是几何学和代数学的基础,也是很多实际问题的数学模型。
本文将介绍高二上册数学直线的基本概念、性质以及相关定理,帮助读者更好地理解和掌握这一知识点。
一、直线的定义直线是由无数个点连成的轨迹,它没有宽度和长度,可以延伸到无穷远。
在坐标平面上,直线可以用一元一次方程来表示,例如y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
二、直线的性质1. 直线上的任意两点可以唯一确定一条直线。
2. 直线的长度是无穷大,无法进行比较大小。
3. 直线可以平移、旋转和镜像,仍保持直线的性质不变。
三、直线的斜率和截距1. 斜率:直线的斜率表示了直线的倾斜程度,可以用斜率公式计算得出。
斜率的定义为直线上任意两点的纵坐标差与横坐标差的比值,即k = (y2 - y1) / (x2 - x1),其中(x1, y1)和(x2, y2)为直线上任意两点的坐标。
2. 截距:直线与y轴的交点称为截距,可以用截距公式计算得出。
截距的定义为直线与y轴交点的纵坐标,即b = y - kx,其中(x, y)为直线上任意一点的坐标。
四、直线的方程表示1. 一般式方程:一般式方程表示为Ax + By + C = 0,其中A、B、C为实数且不全为零,A和B为直线的系数,C为常数项。
2. 点斜式方程:点斜式方程表示为y - y1 = k(x - x1),其中(x1, y1)为直线上一点的坐标,k为直线的斜率。
3. 截距式方程:截距式方程表示为y = kx + b,其中k为直线的斜率,b为直线的截距。
五、直线的性质和定理1. 平行和垂直关系:两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。
2. 直线的倾斜角:直线的倾斜角是直线与正方向x轴之间的夹角,可以用斜率公式计算得出。
3. 直线的点到直线的距离:点到直线的距离可以用点到直线的公式计算得出。
4. 直线的截距定理:如果一条直线与坐标轴的两个交点坐标分别为(x1, 0)和(0, y1),则直线的截距为b = -x1 / y1。
直线与圆的方程知识点总结一、直线的方程1.直线的定义:直线是由一切与它上面两点P、Q相应的全体点构成的集合。
在坐标平面中,直线可以由一般式方程、对称式方程、斜截式方程、截距式方程等多种形式表示。
2.一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
一般式方程表示直线的一种常用形式,它能够直观地反映直线的方向和位置。
3.对称式方程:(x-x1)/(x2-x1)=(y-y1)/(y2-y1),其中(x1,y1)和(x2,y2)为直线上的两个点。
对称式方程通过给出直线上两个点的坐标,从而确定直线的方程。
4. 斜截式方程:y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
斜截式方程将直线的方程转化为了y和x的关系,便于直观地理解直线的特征。
5.截距式方程:x/a+y/b=1,其中a和b为直线与x轴和y轴的截距。
截距式方程能够直观地表达直线与坐标轴的交点,并通过截距反映直线的位置和倾斜情况。
二、圆的方程1.圆的定义:圆是平面上所有到定点的距离等于定长的点的轨迹。
在坐标平面中,圆可以由一般式方程、截距式方程、标准方程等多种形式表示。
2.一般式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
一般式方程为圆的一种常用形式,能够直观地描述圆的位置和形状。
3.截距式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
截距式方程通过圆的截距反映了圆的位置和形状。
4.标准方程:x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
通过圆的标准方程,可以直观地反映圆的位置、形状以及与坐标轴的交点等信息。
5. 圆的三角方程:由半径与直径、半径与斜边等关系来定义圆的方程,例如sinθ = r/l,其中θ为圆心角的弧度,l为圆弧的长度。
圆的三角方程常用于解决涉及圆的三角学问题。
直线和圆知识点总结1、直线的倾斜角:1定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角;当直线l 与x 轴重合或平行时,规定倾斜角为0;2倾斜角的范围[)π,0;如1直线023cos =-+y x θ的倾斜角的范围是____答:5[0][)66,,πππ;2过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______答:42≥-≤m m 或 2、直线的斜率:1定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan αα≠90°;倾斜角为90°的直线没有斜率;2斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;3直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系4应用:证明三点共线:AB BC k k =;如1两条直线钭率相等是这两条直线平行的____________条件答:既不充分也不必要;2实数,x y 满足3250x y --=31≤≤x ,则xy 的最大值、最小值分别为______答:2,13- 3、直线的方程:1点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线;2斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线;3两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线;4截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x ,它不包括垂直于坐标轴的直线和过原点的直线;5一般式:任何直线均可写成0Ax By C ++=A,B 不同时为0的形式;如1经过点2,1且方向向量为v =-1,3的直线的点斜式方程是___________答:12)y x -=-;2直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______答:(1,2)--;3若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______答:1a >提醒:1直线方程的各种形式都有局限性.如点斜式不适用于斜率不存在的直线,还有截距式呢;2直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点;如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条答:34.设直线方程的一些常用技巧:1知直线纵截距b ,常设其方程为y kx b =+;2知直线横截距0x ,常设其方程为0x my x =+它不适用于斜率为0的直线;3知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;5与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解;5、点到直线的距离及两平行直线间的距离:1点00(,)P x y 到直线0Ax By C ++=的距离d =; 2两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =; 6、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:1平行⇔12210A B A B -=斜率且12210B C B C -≠在y 轴上截距;2相交⇔12210A B A B -≠;3重合⇔12210A B A B -=且12210B C B C -=;提醒:1111222A B C A B C =≠、1122A B A B ≠、111222A B C A B C ==仅是两直线平行、相交、重合的充分不必要条件为什么 2在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;3直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=垂直⇔12120A A B B +=;如1设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合答:-1;12;31且m m ≠≠-;3;2已知直线l 的方程为34120x y +-=,则与l 平行,且过点—1,3的直线方程是______答:3490x y +-=;3两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是____答:12a -<<;4设,,a b c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是____答:垂直;5已知点111(,)P x y 是直线:(,)0l f x y =上一点,222(,)P x y 是直线l 外一点,则方程1122(,)(,)(,)f x y f x y f x y ++=0所表示的直线与l 的关系是____答:平行;6直线l 过点1,0,且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________答:43401x y x +-==和7、到角和夹角公式:11l 到2l 的角是指直线1l 绕着交点按逆时针方向转到和直线2l 重合所转的角θ,θ()π,0∈且tan θ=21121k k k k +-121k k ≠-;21l 与2l 的夹角是指不大于直角的角,(0,]2πθθ∈且tan θ=︱21121k k k k +-︱121k k ≠-;提醒:解析几何中角的问题常用到角公式或向量知识求解;如已知点M 是直线240x y --=与x 轴的交点,把直线l 绕点M 逆时针方向旋转45°,得到的直线方程是______答:360x y +-=8、对称中心对称和轴对称问题——代入法:如1已知点(,)M a b 与点N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线0x y +=对称,则点Q 的坐标为_______答:(,)b a ;2已知直线1l 与2l 的夹角平分线为y x =,若1l 的方程为0(0)ax by c ab ++=>,那么2l 的方程是___________答:0bx ay c ++=;3点A4,5关于直线l 的对称点为B-2,7,则l 的方程是_________答:3y=3x +;4已知一束光线通过点A-3,5,经直线l :3x -4y+4=0反射;如果反射光线通过点B2,15,则反射光线所在直线的方程是_________答:18x 510y -=+;5已知ΔABC 顶点A3,-1,AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程答:29650x y +-=;6直线2x ―y ―4=0上有一点P,它与两定点A4,-1、B3,4的距离之差最大,则P的坐标是______答:5,6;7已知A x ∈轴,:B l y x ∈=,C2,1,ABC 周长的最小值为______答:提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解;9、简单的线性规划:1二元一次不等式表示的平面区域:①法一:先把二元一次不等式改写成y kx b >+或y kx b <+的形式,前者表示直线的上方区域,后者表示直线的下方区域;法二:用特殊点判断;②无等号时用虚线表示不包含直线l ,有等号时用实线表示包含直线l ;③设点11(,)P x y ,22(,)Q x y ,若11Ax By C ++与22Ax By C ++同号,则P,Q 在直线l 的同侧,异号则在直线l 的异侧;如已知点A —2,4,B4,2,且直线:2l y kx =-与线段AB 恒相交,则k 的取值范围是__________答:(][)31∞∞-,-,+2线性规划问题中的有关概念:①满足关于,x y 的一次不等式或一次方程的条件叫线性约束条件;②关于变量,x y 的解析式叫目标函数,关于变量,x y 一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题; ④满足线性约束条件的解,x y 叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解;3求解线性规划问题的步骤是什么 ①根据实际问题的约束条件列出不等式;②作出可行域,写出目标函数;③确定目标函数的最优位置,从而获得最优解;如1线性目标函数z=2x -y 在线性约束条件{||1||1x y ≤≤下,取最小值的最优解是____答:-1,1;2点-2,t 在直线2x -3y+6=0的上方,则t 的取值范围是_________答:23t >;3不等式2|1||1|≤-+-y x 表示的平面区域的面积是_________答:8;4如果实数y x ,满足2040250x y x y x y -+≥⎧⎪+-≥⎨--≤⎪⎩,则|42|-+=y x z 的最大值_________答:214在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范;10、圆的方程: ⑴圆的标准方程:()()222x a y b r -+-=;⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么0,A C =≠且0B =且2240D E AF +->;⑶圆的参数方程:{cos sin x a r y b r θθ=+=+θ为参数,其中圆心为(,)a b ,半径为r ;圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤;⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如1圆C 与圆22(1)1x y -+=关于直线y x =-对称,则圆C 的方程为____________答:22(1)1x y ++=;2圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________答:9)3()3(22=-+-y x 或1)1()1(22=++-y x ;3已知(P -是圆{cos sin x r y r θθ==θ为参数,02)θπ≤<上的点,则圆的普通方程为________,P 点对应的θ值为_______,过P 点的圆的切线方程是___________答:224x y +=;23π;40x -+=;4如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是____答:0,2;5方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____答:21<k ;6若{3cos {(,)|3sin x M x y y θθ===θ为参数,0)}θπ<<,{}b x y y x N +==|),(,若φ≠N M ,则b 的取值范围是_________答:(-11、点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,1点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;2点M 在圆C 内⇔ ()()22200CM r x a y b r <⇔-+-<;3点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=;如点P5a+1,12a 在圆x -12+y 2=1的内部,则a 的取值范围是______答:131||<a 12、直线与圆的位置关系:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=()0r >有相交、相离、相切;可从代数和几何两个方面来判断:1代数方法判断直线与圆方程联立所得方程组的解的情况:0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;2几何方法比较圆心到直线的距离与半径的大小:设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切;提醒:判断直线与圆的位置关系一般用几何方法较简捷;如1圆12222=+y x 与直线sin 10(,2x y R πθθθ+-=∈≠k π+,)k z ∈的位置关系为____答:相离;2若直线30ax by +-=与圆22410x y x ++-=切于点(1,2)P -,则ab 的值____答:2;3直线20x y +=被曲线2262x y x y +--150-=所截得的弦长等于答:4一束光线从点A -1,1出发经x 轴反射到圆C:x-22+y-32=1上的最短路程是答:4;5已知(,)(0)M a b ab ≠是圆222:O x y r +=内一点,现有以M 为中点的弦所在直线m 和直线2:l ax by r +=,则A .//m l ,且l 与圆相交 B .l m ⊥,且l 与圆相交 C .//m l ,且l 与圆相离D .l m ⊥,且l 与圆相离答:C ;6已知圆C :22(1)5x y +-=,直线L :10mx y m -+-=;①求证:对m R ∈,直线L 与圆C 总有两个不同的交点;②设L 与圆C 交于A 、B 两点,若AB =求L 的倾斜角;③求直线L 中,截圆所得的弦最长及最短时的直线方程.答:②60或120 ③最长:1y =,最短:1x =13、圆与圆的位置关系用两圆的圆心距与半径之间的关系判断:已知两圆的圆心分别为12O O ,,半径分别为12,r r ,则1当1212|O O r r |>+时,两圆外离;2当1212|O O r r |=+时,两圆外切;3当121212<|O O r r r r -|<+时,两圆相交;4当1212|O O |r r |=|-时,两圆内切;5当12120|O O |r r ≤|<|-时,两圆内含;如双曲线22221x y a b-=的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆位置关系为答:内切14、圆的切线与弦长:1切线:①过圆222x y R +=上一点00(,)P x y 圆的切线方程是:200xx yy R +=,过圆222()()x a y b R -+-=上一点00(,)P x y 圆的切线方程是:200()()()()x a x a y a y a R --+--=,一般地,如何求圆的切线方程 抓住圆心到直线的距离等于半径;②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法抓住圆心到直线的距离等于半径来求;③过两切点的直线即“切点弦”方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;③切线长:过圆220x y Dx Ey F ++++=222()()x a y b R -+-=外一点00(,)P x y 所引圆的切线的长为如设A 为圆1)1(22=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为__________答:22(1)2x y -+=;2弦长问题:①圆的弦长的计算:垂径定理常用弦心距d ,半弦长12a 及圆的半径r 所构成的直角三角形来解:2221()2r d a =+;②过两圆1:(,)0C f x y =、2:(,)0C g x y =交点的圆公共弦系为(,)(,)0f x y g x y λ+=,当1λ=-时,方程(,)(,)0f x y g x y λ+=为两圆公共弦所在直线方程.;15.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等。
平面直角坐标系中直线的知识点直线是平面几何中的基本概念之一,它在平面直角坐标系中有着重要的应用。
了解直线的知识点,对于解决与直线相关的问题具有重要意义。
本文将从直线的定义、直线的表示、直线的性质以及直线的方程等方面进行介绍。
一、直线的定义直线是由无数个点组成的,它是最简单的几何图形之一。
直线可以看作是两个方向无限延伸的点的集合。
直线上的任意两点可以确定一条直线。
直线没有宽度和长度,可以无限延伸,也可以有限延伸。
二、直线的表示直线可以通过两个点来表示。
已知直线上的两个点A(x1, y1)和B(x2, y2),可以表示为AB。
另外,还可以使用直线上的一个点A(x1, y1)和直线的斜率k来表示。
直线的斜率是直线上任意两点的纵坐标之差与横坐标之差的比值,即k=(y2-y1)/(x2-x1)。
三、直线的性质1. 直线的斜率直线的斜率是直线的一个重要性质,它决定了直线的倾斜程度。
斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜,斜率为零表示直线水平,斜率不存在表示直线垂直。
2. 直线的截距直线与坐标轴的交点称为直线的截距。
直线与x轴的交点称为x轴截距,用b表示;直线与y轴的交点称为y轴截距,用a表示。
直线的方程可以通过斜率和截距来表示。
3. 直线的倾斜角直线与x轴的夹角称为直线的倾斜角。
直线的斜率与倾斜角的关系是斜率等于tan(倾斜角)。
4. 直线的平行与垂直关系两条直线平行的条件是它们的斜率相等。
两条直线垂直的条件是它们的斜率的乘积等于-1。
5. 直线的距离直线上一点到另一直线的距离是从该点到直线上的一点作垂线的长度。
四、直线的方程直线的方程是描述直线的数学表达式。
直线的方程有多种形式,包括点斜式、斜截式、截距式等。
1. 点斜式方程已知直线上的一点A(x1, y1)和直线的斜率k,点斜式方程可以表示为y-y1=k(x-x1)。
2. 斜截式方程已知直线的斜率k和y轴截距b,斜截式方程可以表示为y=kx+b。
平面直角坐标系知识点归纳总结一、主要知识点概括:(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
(二)平面直角坐标系1、构成坐标系的各种名称;2、各象限的点的横纵坐标的符号;3、各种特殊位置点的坐标特点:原点、坐标轴上的点、角平分线上的点;4、点A(x,y)到两坐标轴的距离;5、同一坐标轴上两点间的距离;6、根据已知条件求某一点的坐标。
(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、各象限内点的坐标特点:第一象限:P(x,y)x>0 y>0第二象限:P(x,y)x<0 y>0第三象限:P(x,y)x<0 y<0第四象限:P(x,y)x>0 y<0三、原点及坐标轴上点的坐标特点:原点:P(0,0)X轴上的点:P(x,0)Y轴上的点:P(0,y)四、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
五、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
六、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数七、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:? 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;? 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;? 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
中考知识点平面直角坐标系平面直角坐标系是数学中常用的一种坐标系,用于描述平面上的点的位置。
它的引入使得平面几何和代数联系起来,方便我们进行各种计算和分析。
本文将介绍中考数学中涉及到的平面直角坐标系的知识点,包括定义、坐标表示、距离公式、斜率和直线方程等内容。
一、平面直角坐标系的定义平面直角坐标系由两条相互垂直的坐标轴组成,分别称为x轴和y 轴。
它们的交点称为原点O,x轴和y轴上的单位长度分别称为x轴单位和y轴单位。
平面上的点可以用有序数对(x, y)表示,其中x表示点到y轴的有向距离,y表示点到x轴的有向距离。
这样,每个点都可以唯一确定。
二、平面直角坐标系中的点的坐标表示在平面直角坐标系中,每个点都有唯一的坐标表示。
以x轴和y轴的单位长度为1,以O为原点,我们可以通过测量点到坐标轴的垂直距离来确定一个点的坐标。
点的横坐标表示其到y轴的有向距离,纵坐标表示其到x轴的有向距离。
例如,点A的坐标表示为(Ax, Ay)。
三、平面直角坐标系中两点间的距离公式在平面直角坐标系中,我们可以通过求两点间的距离来计算它们之间的距离。
设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By),则点A 和点B之间的距离d可以用以下公式表示:d = √((Bx - Ax)² + (By - Ay)²)四、斜率的概念及计算方法在平面直角坐标系中,我们可以通过斜率来描述一条直线的倾斜程度。
直线的斜率定义为直线上任意两点的纵坐标差与横坐标差的比值。
设直线上两点A(x₁, y₁)和B(x₂, y₂),则直线的斜率k可以用以下公式表示:k = (y₂ - y₁) / (x₂ - x₁)五、直线的方程在平面直角坐标系中,我们可以用方程来表示直线。
常见的直线方程有斜截式、截距式和一般式。
其中斜截式方程表示为y = kx + b,其中k为直线的斜率,b为直线与y轴的交点的纵坐标。
截距式方程表示为y = mx + c,其中m为直线的斜率,c为直线与x轴的交点的纵坐标。
高考数学直线方程知识点总结高考数学中,直线方程是一个非常重要的知识点。
直线是我们周围不可或缺的几何要素,也是许多数学问题的关键要素。
而在高考中,直线方程也经常成为考试的热点难点,理解掌握这个知识点,对我们取得好成绩也有着重要的作用。
一、直线的解析式在平面直角坐标系中,直线的解析式可以表示如下:y = kx + b其中,k为直线的斜率,b为直线在y轴上的截距,y轴截距指的是直线与y轴的交点纵坐标。
当直线不垂直于x轴时,斜率k可以表示为:k = tanθ其中,θ是直线与x轴正方向的夹角,斜率k表示的是直线的倾斜程度。
二、直线的一般式在平面直角坐标系中,直线的一般式可以表示为:Ax + By + C = 0其中,A、B、C代表实数且不全为0,A和B不同时为0。
直线的一般式与解析式的换算可以表示如下:A = -k,B = 1,C = -bk = - A/B,b = - C/B三、点斜式如果已知直线上的一点(x0,y0)和直线的斜率k,就可以求出直线的解析式:y - y0 = k(x - x0)点斜式可以根据直线的斜率和其中一个点来确定直线的解析式,因此对于已知一点和一斜率的情况下就可以确定一条直线的解析式。
四、两点式如果已知直线上的两个点(x1,y1)和(x2,y2),则可以求出直线的解析式:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)两点式可以根据直线的两个点来确定直线的解析式,因此对于已知两点的情况下就可以确定一条直线的解析式。
五、截距式如果已知直线在x轴上的截距a和y轴上的截距b,直接就可以求出直线的解析式:y = kx + b截距式可以根据直线在x轴和y轴上的截距来确定直线的解析式,因此对于已知两个截距的情况下就可以确定一条直线的解析式。
六、平面直角坐标系中两条直线的位置关系如果两条直线的斜率相等,它们平行;如果两条直线的斜率互为相反数,则它们垂直;如果两条直线的斜率不相等也不互为相反数,则它们相交。
平面直角坐标系中的基本公式【知识梳理】要点一:直线坐标系(1)定义:一条给出了原点、度量单位和正方向的直线叫做数轴,或者说在这条直线上建立了直线坐标系. 要点诠释:一般地,我们约定数轴水平放置,正方向为从左到右.(2)数轴上的点与实数的对应法则:P ←−−−−→一一对应实数x . (3)记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P (x ).当x >0时,点P 位于原点右侧,且点P 与原点O 的距离|OP |=x ;当x <0时,点P 位于原点左侧,且点P 与原点的距离|OP |=-x要点二:向量及数轴上两点间的距离公式(1)定义:位移是一个既有大小又有方向的量,通常叫做位移向量,本书简称为向量.从点A 到点B 的向量,记作AB .点A 、B 分别叫做向量AB 的起点、终点.向量的长度:线段AB 的长叫做向量AB 的长度,记作|AB |.相等的向量:数轴上同向且等长的向量叫做相等的向量.数量:我们可用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量.要点诠释:要正确区分向量、向量的长度、向量的坐标(数量)这几个概念,它们分别用AB 、||AB 、AB 来表示;两个向量相等,必须长度和方向都相同;零向量是起点和终点重合的向量,它的长度为0,方向不确定.(2)位移向量的和:在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC 叫做位移AB 与位移BC 的和,记作AC AB BC =+.要点诠释:作和向量的规律特点:前一个向量的终点是下一个向量的起点(尾首相接),而和向量是第一个向量的起点指向最后一个向量的终点(首尾相连).(3)数量和:数轴上任意三点A 、B ,C ,都具有关系AC =AB+BC .要点诠释:①这个公式反映了数轴上向量加法的坐标运算法则,是解析几何的基本公式.②数轴上任意三点.A 、B 、C 都有关系AC =AB+BC ,但不一定有|AC |=|AB |+|BC |,它与A 、B 、C 三个点的相对位置有关.(4)数轴上两点间的距离公式:向量的坐标计算公式:设AB 是数轴上的任意一个向量,点A 的坐标为1x ,点B 的坐标为2x ,则21AB x x =-.一般地,数轴上的任意一个向量的坐标等于它的终点坐标减去起点坐标.用d (A ,B )表示A ,B 两点的距离,可得数轴上两点A ,B 的距离公式是21()||||d A B AB x x ==-,.要点三:平面直角坐标系中两点间的距离公式平面上有两点A (1x ,1y ),B (2x ,2y ) ,则两点间的距离为d (A ,B )=|AB |=222121()()x x y y -+-.要点诠释:两点间的距离公式是一个很重要的公式,要熟练地掌握,记住公式的形式,对于两点的横坐标或纵坐标相等的情况,可以直接利用距离公式的特殊情况求解.要点四:中点坐标公式若A (1x ,1y )、B (2x ,2y ),则线段AB 的中点M (x ,y )的坐标计算公式为122x x x +=,122y y y +=. 要点诠释:此公式的推导过程中注意把问题向数轴上转化,体现了数学上的转化思想.要点五:坐标法1.通过建立平面直角坐标系,用代数方法来解决几何问题的方法叫做坐标法,其体现的基本思想是数形结合思想.2.用解析法解决几何问题的基本步骤如下:(1)选择坐标系.坐标系的选择是否恰当,直接关系到以后的论证是否简洁.原则:选择坐标系要使得问题所涉及的坐标中尽可能多地出现零.为此,常常有以下约定:①将图形一边所在的直线或定直线作为x 轴.②对称图形,则取对称轴为x 轴或y 轴.③若有直角,则取直角边所在的直线为坐标轴.④可将图形的一个定点或两个定点连线的中点作为原点.(2)标出图形上有关点的坐标,按已知条件用坐标表示等量关系.(3)通过以上两个程序,把几何问题等价转化为代数式来计算.【典型例题】类型一:向量及数轴上点的距离公式例1.已知A 、B 、C 是数轴上任意三点.(1)若AB =5,CB =3,求AC ;(2)证明:AC+CB =AB ;(3)若|AB |=5,|CB |=3,求|AC |.【答案】(1)2(2)略(3)2或8【解析】 (1)AC =AB+BC =AB -CB =5-3=2.(2)证明:设数轴上A 、B 、C 三点的坐标分别为A x 、B x 、C x ,则AC+CB =(C A x x -)+(B C x x -)=B A x x AB -=,故AC+CB =AB .(3)当点C 在A 、B 两点之间时,由下图①可知|AC |=|AB |-|BC |=5-3=2;当点C 在A 、B 两点之外时,由上图②可知|AC |=|AB |+|BC |=5+3=8.综上所述,|AC |=2或8.【总结升华】 向量及向量长度的计算应熟练地运用公式AB =B A x x -,及|AB |=||||B A A B x x x x -=-进行求解.对于(3)要注意点B (或点C )的位置,若不确定应分类讨论.举一反三:【变式1】已知数轴上A 、B 两点的坐标分别为1x a b =+,2x a b =-.求AB 、BA 、d (A ,B )、d (B ,A ).【答案】2b - 2b 2||b 2||b【解析】 21AB x x =-=()()2a b a b b --+=-,12()()2BA x x a b a b b =-=+--=,d (A ,B )=21||2||x x b -=,d (B ,A )=12||2||x x b -=.【变式2】 关于位移向量,下列说法正确的是 ( )A .数轴上任意一个点的坐标有正负和大小,它是一个位移向量B .两个相等的向量的起点可以不同C .每一个实数都对应数轴上的唯一的一个位移向量D .AB 的大小是数轴上A 、B 两点到原点距离之差的绝对值【答案】 B【解析】 一个点的坐标没有大小,每个实数对应着无数个位移向量。
坐标平面上的直线知识点归纳一、直线的倾斜角和斜率:(1)直线的倾斜角:在平而直角坐标系中,对于一条与X轴相交的直线,如果把X轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为Q,那么 &就叫做直线的倾斜角。
注意:规立当直线和X轴平行或重合时,苴倾斜角为0°,所以直线的倾斜角Q的范围是0" Sa V180";(2)直线的斜率:倾斜角不是90"的直线,它的倾斜角的正切叫做这条直线的斜率,k = tan a①斜率是用来表示倾斜角不等于90“的直线对于x轴的倾斜程度的。
②每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x轴时,苴斜率不存在),这就决左了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
③斜率汁算公式:设经过A(x,, ”)和B(X2,儿)两点的直线的斜率为k ,则当心时,A: = tana = -1—1;当“=不时,a = 90":斜率不存在:二、直线方程的几种形式:(1)点斜式:过已知点(心,儿),且斜率为k的直线方程:y-y0 = Ar(x-x0):注意:①当直线斜率不存在时,不能用点斜式表示,此时方程为x = x0:= k表示:y 一= k(x一心)直线上除去(心,几)的图形。
x _ 心----------------- ----------------(2) 斜截式:若已知直线在y 轴上的截距为",斜率为k,则直线方程:y = kx+b ; 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与"距离”有区别。
(3) 两点式:若已知直线经过(册,y J 和(x 2,y 2)两点,且(州工七,儿工)'2),则直线的 方程:亠=二: 儿一儿勺一州 注意:①不能表示与x 轴和y 轴垂直的直线: ②当两点式方程写成如下形式(£一山)(〉'一戸)一(〉'2-戸)匕—册)=0时, 方用町以适应任h 「:何-条血线° (4)截距式:若已知直线在x 轴,y 轴上的截距分别是",b (G HO,〃HO )则直线方程:兰+2 = 1; a b 注意:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表 示过原点的直线,要谨慎使用。
平面直角坐标系知识点1.坐标轴:-x轴:水平方向的直线,与y轴垂直。
-y轴:竖直方向的直线,与x轴垂直。
-坐标原点:x轴与y轴的交点,坐标为(0,0)。
2.坐标表示:-一点的坐标表示为(x,y),其中x为该点在x轴上的坐标值,y为该点在y轴上的坐标值。
-向右移动x个单位,向上移动y个单位,可以到达坐标点(x,y)。
3.象限:-平面直角坐标系被分为四个象限,分别为第一象限、第二象限、第三象限和第四象限。
-第一象限:x轴与y轴的正方向所在的象限,x轴和y轴上的坐标值都为正数。
-第二象限:x轴的负方向与y轴的正方向所在的象限,x轴上的坐标值为负数,y轴上的坐标值为正数。
-第三象限:x轴与y轴的负方向所在的象限,x轴和y轴上的坐标值都为负数。
-第四象限:x轴的正方向与y轴的负方向所在的象限,x轴上的坐标值为正数,y轴上的坐标值为负数。
4.距离公式:-两点之间的距离可以使用勾股定理计算。
设A(x1,y1)和B(x2,y2)是两个点,在平面上划出一个三角形,其底边为x轴上的线段,高为y轴上的线段。
-这时,AB的距离d可以使用勾股定理表示:d=√((x2-x1)²+(y2-y1)²)。
5.直线和斜率:- 平面上的直线可以用方程表示,通常形式为y = kx + b,其中k 是斜率,表示直线与x轴的夹角的正切值;b是该直线与y轴交点的纵坐标。
-平行于y轴的直线的斜率为无穷大,与y轴相交的点无x坐标,方程为x=a,其中a是与y轴相交的点的横坐标。
6.对称性:-平面上的点关于x轴对称:设点A的坐标为(x,y),则点A'的坐标为(x,-y)。
-平面上的点关于y轴对称:设点A的坐标为(x,y),则点A'的坐标为(-x,y)。
-平面上的点关于原点对称:设点A的坐标为(x,y),则点A'的坐标为(-x,-y)。
7.坐标变换:-平面上的点可通过平移、旋转、缩放等方式进行坐标变换。
-平移:将点A(x,y)平移h个单位到点A'(x+h,y)。
第十一章 坐标平面上的直线知识点汇总
11.1 直线的方程
注:若已知直线l 经过定点()00,P x y ,常设直线l 的方程为(1)____________________________ (2)___________________________________________________________
11.2 倾斜角与斜率
1、直线的倾斜角:
设直线l 与x 轴相交于点M ,将x 轴绕着点M ___时针方向旋转至与直线l 重合时所成的最小___角叫做直线l 的倾斜角。
当直线l 与x 轴____________时,规定其倾斜角为________。
因此直线的倾斜角α的范围是____________。
2、直线的斜率:
1) ___________ , 2
___________ , 2
k παπα⎧
≠⎪⎪=⎨⎪=⎪⎩,其对应关系的图像为:
2)直线l 经过点()111,P x y 和()222,P
x y ,其中12x x ≠,那么直线l 的斜率
k =____________。
3、直线的斜率k 、方向向量d 和方向向量n
之间关系:
11.3 两条直线的位置关系
1. 两直线的相交、平行和重合的判定
行列式法(充要条件)
1111:0l a x b y c ++=(1a 、1b 不全为零)
,2222:0l a x b y c ++=(2a 、2b 不全为零), , , ,
x y D D D =
=
=
(1)相交 _________;(2)平行 ____;(3)重合 ; 系数法(非充要条件)
(1)相交 _________;(2)平行 ____;(3)重合 ;
2. 两直线的夹角
1)1111:0l a x b y c ++=(1a 、1b 不全为零),2222:0l a x b y c ++=(2a 、2b 不全为零),则这 两条直线的夹角公式:cos α= ___________;角α的范围为_______________; 2)若直线1l 和2l 的斜率都存在,分别设为1k 、2k ,则tan α= (121k k ⋅≠-) 3)1l 和2l 垂直的充要条件是___________________________________________________________; 4) 对称性:
1、点关于点的对称转化为_____________________;
2、点关于直线的对称转化为___________________;
关于特殊直线的对称:点()111,y x P 关于直线0:=+±C y x l 的对称点()222,y x P 的坐标可通过直接代入法求得________________________________________________________________;
在定直线l 上找一点,使得到两定点距离之和最小转化为_________________________________; 在定直线l 上找一点,使得到两定点距离之差的绝对值最大转化为___________________________; 3、直线关于直线的对称转化为__________________________________;
11.4 点到直线的距离
(1)点00(,)P x y 到直线:0l ax by c ++=(22
0a b +≠)的距离公式为d = .
(2)两条平行直线11:0l ax by c ++=和22:0l ax by c ++=之间的距离公式d = ___. (3)用于判断点与直线的相对位置的有向距离=δ ________;位于直线l 的同侧的点的δ符号 _______;位于直线l 的异侧的点δ的符号 _______; 若直线l 与线段AB 相交⇔_________________________。