2.2.2 用样本的数字特征估计总体的数字特征(导学案)
- 格式:doc
- 大小:97.00 KB
- 文档页数:2
2.22 用样本的数字特征估计总体的数字特征1.掌握众数、中位数、平均数、标准差、方差的定义和特征.2.会求众数、中位数、平均数、标准差、方差,并能用之解决有关问题.1.众数(1)定义:一组数据中出现次数的数称为这组数据的众数.(2)特征:一组数据中的众数可能个,也可能没有,反映了该组数据的.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.【做一做1】 数据组8,-1,0,4,17,4,3的众数是. 2.中位数(1)定义:一组数据按从小到大的顺序排成一列,处于位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是的,反映了该组数据的.在频率分布直方图中,中位数左边和右边的直方图的面积.中位数不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.【做一做2】数据组-5,7,9,6,-1,0的中位数是.3.平均数(1)定义:一组数据的和与这组数据的个数的商.数据1,的平均数为\t()=2,…,n(2)特征:平均数对数据有“取齐”的作用,代表该组数据的.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起,平均数可以反映出更多的关于样本数据全体的,但平均数受数据中的影响较大,使平均数在估计总体时可靠性降低.【做一做3】 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,则其平均数是.4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式计算s=可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较;标准差较小,数据的离散程度较.【做一做4】一组数据的单位是,平均数是\t(),标准差为s,则( )A.\t()与s的单位都是B.\t()与s的单位都是c.\t()与s的单位都是D.\t()与s的单位不同5.方差[](1)定义:标准差的平方,即s2=(2)特征:与的作用相同,描述一组数据围绕平均数波动程度的大小.(3)取值范围:数据组1,2,…,n的平均数为\t(),方差为s2,标准差为s,则数据组a1+b,a2+b,…,a n+b(a,b为常数)的平均数为a\t()+b,方差为a2s2,标准差为as【做一做5】下列刻画一组数据离散程度的是( )A.平均数B.方差.中位数D.众数6.用样本估计总体现实中的总体所包含的个体数往往很多,总体的平均数、众数、中位数、标准差、方差是不知道的,因此,通常用的平均数、众数、中位数、标准差、方差估计.这与上一节用的频率分布近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.用样本的数字特征估计总体的数字特征分两类:用样本平均数估计总体平均数;用样本标准差估计总体标准差.样本容量越大,估计就越精确.【做一做6-1】下列判断正确的是( )A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数.样本平均数一定等于总体平均数[]D.样本容量越大,样本平均数越接近总体平均数【做一做6-2】电池厂从某日生产的电池中抽取10个进行寿命测试,得数据如下(单位:小时):30,35,25,25,30,34,26,25,29,21,则该日生产电池的平均寿命估计为( )A.27 B.28 .29 D.30答案:1.(1)最多(2)不止一集中趋势【做一做1】 42.(1)中间(2)唯一集中趋势相等[]【做一做2】 3 将该组数据按从小到大排列为-5,-1,0,6,7,9,则中位数是0+62=33.(1)1+2+…+n n(2)平均水平 信息 极端值 【做一做3】 147 平均数是110(15+17+14+10+15+17+17+16+14+12)=1474.(1)错误! (2)平均数 大 小 【做一做4】 \t()与s 的单位都与数据组中的数据单位相同,是5.(1)1n[(1-\t())2+(2-\t())2+…+(n -\t())2] (2)标准差 (3)[0,+∞)【做一做5】 B 方差刻画一组数据离散程度的大小.6.样本 样本【做一做6-1】 D【做一做6-2】 B 这10个数据的平均数是110(30+35+25+25+30+34+26+25+29+21)=28,则该日生产的电池的平均寿命估计为28小时.1.理解众数、中位数、平均数剖析:(1)众数体现了样本数据的最大集中点,容易计算,但它只能表达样本数据中很少一部分信息,显然对其他数据信息的忽略使其无法客观地反映总体特征.(2)中位数不受少数几个极端值的影响,容易计算,但它对极端值的不敏感有时也会成为缺点.(3)由于平均数与每一个样本的数据有关,“越离群”的数据,对平均数的影响也越大,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质.也正因为这个原因,与众数、中位数比较起,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.如在体育、文艺等各种比赛的评分中,使用的是平均数,计分过程中采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止由于个别裁判的人为因素而给出过高或过低的分数,对选手的得分造成较大的影响,从而降低误差,尽量保证公平性.(4)在一组数据中,它们的众数、中位数、平均数可能相同,也可能不同,而实际问题中,计算平均数时应该注意按实际要求进行计算.(5)实际问题中求得的平均数、众数和中位数应带上单位.2.众数、中位数、平均数与频率分布直方图的关系剖析:(1)在样本数据的频率分布直方图中,众数的估计值就是最高矩形的中点的横坐标.(2)在频率分布直方图中,中位数左右两侧的直方图的面积相等,但是因为样本数据的频率分布直方图只是直观地表明分布的特征,因而从直方图本身得不出原始的数据内容,所以由频率分布直方图得到的中位数估计值往往与样本的实际中位数的值不一致.(3)平均数显然是频率分布直方图的“重心”.我们知道,n个样本数据1,2,…,n的平均数\t()=1n(1+2+3+…+n),则就有n\t()=1+2+3+…+n,所以\t()对数据有“取齐”的作用,代表了一组数据的数值平均水平.在频率分布直方图中,平均数是直方图的平衡点,假设横轴表示一块放置直方图的跷跷板,则支点取在平均数处时跷跷板达到平衡.3.理解方差与标准差剖析:(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差的取值范围是[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.题型一计算方差(标准差)【例题1】从某项综合能力测试中抽取100人的成绩,统计如下表,则这100人成绩的标准差为.反思:求一组数据的方差和标准差的步骤如下:①先求平均数\t()②代入公式得方差和标准差s2=1n[(1-\t())2+(2-\t())2+…+(n-\t())2],s=错误!题型二众数、中位数、平均数的应用【例题2】某工厂人员及月工资构成如下:(1)指出这个问题中的众数、中位数、平均数.(2)这个问题中,平均数能客观地反映该工厂的月工资水平吗?为什么?分析:(由平均数的定义)→(计算平均数)→(已知数据从小到大排列)→(得中位数、众数)→(结论) 反思:(1)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中的极端数据信息,帮助我们作出决策.(2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特征,它是各个数据的重心.题型三方差的应用【例题3】甲、乙两台包装机同时包装质量为200克的糖果,从中各抽出10袋,测得其实际质量分别如下(单位:克):甲:203 204 202 196 199 201 205 197 202 199乙:201 200 208 206 210 209 200 193 194 194(1)分别计算两个样本的平均数与方差.(2)从计算结果看,哪台包装机包装的10袋糖果的平均质量更接近于200克?哪台包装机包装的10袋糖果的质量比较稳定?反思:研究两个样本的波动情况或比较它们的稳定性、可靠性、平整性等性能好坏的这类题,先求平均数,比较一下哪一个更接近标准.若平均数相等,则再比较两个样本方差的大小作出判断.在计算过程中,要仔细观察所给样本数据的特征,选择恰当的公式计算平均数和方差,这样可避免计算的烦琐,降低错误率.题型四易错辨析【例题4】小明是班里的优秀生,他的历次数成绩是96,98,95,93分,但最近的一次考试成绩只有45分,原因是他带病参加了考试.期末评价时,怎样给小明评价?错解:这五次数考试的平均分是96+98+95+93+455=854,则按平均分给小明一个“良好”. 错因分析:这种评价是不合理的,尽管平均分是反映一组数据平均水平的重要特征,但任何一个数据的改变都会引起它的变化,而中位数则不受某些极端值的影响.本题中的5个成绩从小到大排列为:45,93,95,96,98,中位数是95,较为合理地反映了小明的数水平,因而应该用中位数衡量小明的数成绩.答案:【例题1】 2105这100人的总成绩为5×20+4×10+3×30+2×30+1×10=300,平均成绩为300100=3,则该100人成绩的标准差为错误! =2105【例题2】 解:(1)由表格可知,众数为2 000元.把23个数据按从小到大(或从大到小)的顺序排列,排在中间的数应是第12个数,其值为2 200,故中位数为2 200元.平均数为(22 000+15 000+11 000+20 000+1 000)÷23=69 000÷23=3 000(元).(2)虽然平均数为3 000元/月,但由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平.【例题3】解:(1)\t()甲=110(3+4+2-4-1+1+5-3+2-1)+200=2008\t()乙=110(1+0+8+6+10+9+0-7-6-6)+200=2015s\al(2,甲)=796,s\al(2,乙)=3805(2)∵200<\t()甲<\t()乙,∴甲台包装机包装的10袋糖果的平均质量更接近于200克.∵s\al(2,甲)<s\al(2,乙),∴甲台包装机包装的10袋糖果的质量比较稳定.【例题4】正解:小明5次考试成绩,从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.1.如图,是某篮球运动员在一个赛季的30场比赛中得分的茎叶图,则得分的中位数与众数分别为( )A.3与3 B.23与3 .3与23D.23与232.(2011·北京海淀二模,理5)某赛季甲、乙两名篮球运动员各13场比赛的得分情况用茎叶图表示如下:根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数.甲运动员的得分平均值大于乙运动员的得分平均值D.甲运动员的成绩比乙运动员的成绩稳定3.抛硬币20次,抛得正面朝上12次,反面朝上8次.如果抛到正面朝上得3分,抛到反面朝上得1分,则平均得分是,得分的方差是.4.某人5次上班途中所花的时间(单位:分钟)分别为,y,10,11,9已知这组数据的平均数为10,方差为2,则2+y2=5.某校高二年级在一次数选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:求两人比赛成绩的平均数以及方差,并且分析成绩的稳定性,从中选出一位参加数竞赛.答案:1.D 中位数是指一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数),从茎叶图中可知中位数为23;众数是指一组数据中出现次数最多的数,从茎叶图中可知23出现了3次,次数最多,因此众数也是23,所以选D.2.D 甲运动员比赛得分的最高分为47,最低分为18,极差为29,乙运动员比赛得分的最高分为33,最低分为17,极差为16,所以A项正确;甲运动员比赛得分的中位数为30,乙运动员比赛得分(18的中位数为26,所以B项正确;甲运动员的得分平均值x甲=113+18+19+20+21+26+30+32+33+35+40+41+47)=343,乙13(17+17+19+19+22+25+26+27+运动员的得分平均值x乙=113,甲运动员的得分平均值大于乙运动员29+29+30+32+33)=32513的得分平均值,所以项正确;由茎叶图知甲得分较为分散,乙得分较为集中,故甲的成绩没有乙的成绩稳定.=3.22 096 总得分为12×3+8×1=44,则平均分是4420[(3-22)2×12+(1-22)2×8]=09622,方差s2=120=10,4.208 由平均数为10,得(+y+10+11+9)×15则+y=20;又由于方差为2,则[(-10)2+(y-10)2+(10-10)2+(11-=2,10)2+(9-10)2]×15整理得2+y2-20(+y)=-192,则2+y2=20(+y)-192=20×20-192=208 5.解:设甲乙两人成绩的平均数分别为x甲,x乙,则x甲=130+1(380751)6-+++++=133,x乙=130+1(318426)6-++-+=133,2 s 甲=2222221[(6)5(3)42(2)]6-++-+++-=473,2 s 乙=2222221[0(4)51(5)3]6+-+++-+=383因此,甲与乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应该选乙参加竞赛比较合适.。
一、知识点归纳整理:1. 中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据或中间两数的平均数叫这组数据的中位数2.众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数 (可能有多个或没有众数)3.平均数:n个数x1,x2,…,x n,x = 1n( x1+x2+…+x n )叫n个数的算术平均数,简称平均数4. 方差和标准差的符号和计算公式是怎样的?它们反映了这组数据哪方面的特征?答:方差和标准差分别用S 2和s表示.用表示一组数据的平均数,x1、x2、… x n表示n 个数据,则这组数据方差的计算公式是标准差的计算公式是方差和标准差反映的是一组数据与平均值的离散程度或一组数据的稳定程度.方差反映数据波动大小,方差越大,则波动越大, 越不稳定标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数练习1:这三组数据的平均数、方差和标准差。
平均数方差标准差1、2、3、4、5 3 211、12、13、14、15 13 23、6、9、12、15 9 18撰稿人:赵志岩练习2:请你用上面发现的结论来解决以下的问题。
已知数据a1,a2,a3,…,a n的平均数为X,方差Y, 标准差Z, 则①数据a1+3,a2 +3,a3 +3,…,a n +3平均数为---------,方差为-------,标准差为----------。
②数据a1-3,a2 -3,a3 -3,…,a n -3平均数为----------,方差为--------,标准差为----------。
③数据3a1,3a2 ,3a3 ,…,3a n的平均数为-----------,方差为-----------,标准差为----------。
④数据2a1-3,2a2 -3,2a3 -3,…,2a n -3的平均数为----------,方差为---------,标准差为----------。
§2.2.2用样本的数字特征估计总体的数字特征一、课标导航(1)了解众数、中位数、平均数并会求一组数据的平均数. (2)理解方差、标准差的概念并会求方差、标准差. (3)会用方差、标准差估计总体的数字特征. (4)形成对数据处理过程进行初步评价的意识. 二、重点难点重点:用样本平均数和标准差估计总体的平均数与标准差. 难点:能应用相关知识解决简单的实际问题.考点:平均数、标准差、众数、中位数等基本概念主要以填空题的形式考查,并与概率相联系,难度很小. 三、新课探究 知识导引在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕ 甲运动员:7,8,6,8,6,5,8,10,7,4; 乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗? 自学导拨一、众数、中位数、平均数1.众数:一组数据中重复出现次数 的数称为这组数的众数.2.中位数:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数称为这组数据的中位数.(1)当数据个数为奇数时,中位数是按从小到大的顺序排列的 的那个数. (2)当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的 . 3. 平均数:如果有n 个数123,,,n x x x x ,那么 叫这n 个数的平均数.4.实际问题中求得的众数、中位数、平均数应带上单位. 二、标准差、方差1.数据的离散程度可用极差、 、 来描述.样本方差描述了一组数据围绕平均数波动的大小.一般地,设样本的数据为123,,,n x x x x ,样本的平均数为x ,则定义2s ,2s 表示方差.2.为了得到以样本数据的单位表示的波动幅度,通常要求出样本方差的算术平方根s = ,s 表示样本标准差.不要漏写单位.三、如何从频率分布直方图中估计众数、中位数、平均数呢? 众数:最高矩形的中点.中位数:左右两边直方图的面积相等.平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.四、精例讲解 题型一 众数、中位数、平均数的应用例1:某工厂人员及工资构成如下:(1)指出这个问题中的众数、中位数、平均数;(2)这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?反思:在用平均数估计总体的时候,样本中的每一个数据都会影响到平均数的大小,因此在实际操作中,一定要注意个别极端值对平均数的影响.变式训练1:在一次歌手大奖赛中,6位评委现场给每位歌手打分,然后去掉一个最高分和一个最低分,其余分数的平均数作为该歌手的成绩,已知6位评委给某位歌手的打分是: 9.2,9.5,9.4,9.6,9.8,9.5.求这位歌手的得分及6位评委评分的众数和中位数.题型二频率条形图的绘制例2:为了估计某人的射击技术状况,在他的训练记录中抽取了50次进行检验,他命中环数如下:7 8 6 8 6 5 9 10 7 95 6 5 6 7 8 7 9 10 98 5 7 8 7 6 8 6 7 79 6 5 8 6 9 6 8 10 78 7 8 6 9 8 7 10 8 9(1)作出频率分布表;(2)画出频率分布条形图;(3)估计该人命中6~8环的百分比是多少.变式训练2:在一小时内统计一传呼台接收到用户的呼唤次数,按每分钟统计如下:0 0 1 2 1 2 2 3 4 10 1 2 5 3 1 2 2 2 42 43 1 1 3 2 34 61 2 0 2 3 1 3 1 4 11 2 0 2 3 4 2 5 0 21 1 0 32 13 1 2 0写出一分钟内传呼呼唤次数的频率分布表,并画出频率分布条形图.题型三平均数、方差的应用例3:对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度(m/s)数据如下: 甲:27,38,30,37,35,31; 乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀.变式训练3:从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位;cm):甲:25 41 40 37 22 14 19 39 21 42乙:27 16 44 27 44 16 40 40 16 40问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐?反思:一组数据的方差,刻画了这组数据的波动大小(即各数据偏离平均数的大小,也称离散性、差异性).方差越大,说明这组数据的波动越大,即这组数据越分散;方差越小,说明这组数据越集中.题型四中位数、平均数的应用例4:高一(2)班有男生27名,女生21名,在一次物理测试中,男生的平均分82分,中位数是75分,女生的平均分是80分,中位数是80分.(1)求这次测试全班平均分(精确到0.01).(2)估计全班成绩在80分以下(含80分)的学生至少有多少?(3)分析男生的平均分与中位数相差较大的主要原因是什么?变式训练4:某高校有甲、乙两个数学兴趣班,其中甲班40人,乙班50人,现分析两个班的一次考试成绩,算得甲班的平均成绩为90分,乙班的平均成绩为81分,则该校数学兴趣班的平均成绩是________分. 五、课堂检测1.已知一组数据为20、30、40、50、50、60、70、80,其中平均数、中位数和众数的大小关系是A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数2.已知一组数据按从小到大的顺序排列为-1,0,4,x ,6,15,且这组数据中位数为5,那么数据中的众数为( )A.5B.6C.4D.5.53.一组数据的标准差为s ,将这组数据每一个数据都扩大到原来的2倍,所得到的一组数据的方差是( )A.32sB.42sC.22sD.2s4.在样本方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10和20分别表示样本的( )A.容量、方差B.平均数、容量C.容量、平均数D.标准差、平均数 5.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为x ,s 2,则新数据的平均数是________,方差是________,标准差是________. 6.若40个数据的平方和是56,平均数是22,则这组数据的方差是____,标准差是_____.7.期末考试后,班长算出了全班40个人的数学成绩的平均分为M ,如果把M 当成一个同学的分数与原来的40个分数一起算出这41个分数的平均值N,那么NM=________. 8.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s 2=___________. 六、能力提升1.某人5次上班途中所花时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值是( ) A.1B.2 B.3D.42.甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计一下两名战士的射击情况. 七、品位高考1.在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A.92,2B.92,2.8C.93,2D.93,2.82.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20 mm.(图见课件)。
2.2.2用样本的数字特征估计总体的数字特征(导学案)§2.2.2用样本的数字特征估计总体的数字特征学习目标:(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
学习重点与难点1.重点:用样本平均数和标准差估计总体的平均数与标准差。
2.难点:能应用相关知识解决简单的实际问题。
一、新课探究1.众数、中位数、平均数的概念。
①众数:。
②中位数:。
(当数据个数为奇数时,中位数是按从小到大的顺序排列中间的那个数.当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的两个数的平均数). ③平均数:nx x x xx n++++= (321)求下列各组数据的众数、中位数、平均数 (1)1 ,2,3,3,3,4,6,7,7,8,8,8 (2)1 ,2,3,3,3,4,6,7,8,9,9 2.如何从频率分布直方图中估计众数、中位数、平均数呢?①众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
②中位数就是频率分布直方图面积的一半所对应的值 ③平均数则是每组频率的中间值乘频数再相加3.标准差、方差的概念。
(1)样本方差描述了一组数据围绕平均数波动的大小.一般用2s 表示。
一般地,设样本的数据为123,,,nx x x x ,样本的平均数为x ,则定义2s = , (2)2S 算术平方根,,即为样本标准差。
其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。
在刻画样本数据])()()[(122221x x x x x x ns n ++++-=如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500))(1)求居民收入在[3000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;4:从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm):甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米苗长得高?(2)哪种玉米苗长得齐?5某次运动会甲、乙两名射击运动员成绩如下:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;(1)用茎叶图表示甲,乙两个成绩;(2)分别计算两个样本的平均数和标准差s ,并根据计算结果估计哪位运动员的成绩比较稳定.6某工厂甲、乙两个车间分别制作一种零件,在自动包装传送带上每隔10分钟抽取一件产品,测其质量,分别记录抽查的数据如下:甲:102,101,99,98,103,98,99乙:105,102,97,92,96,101,107.(1)这种抽样方法是什么抽样?(2)估计甲、乙两个车间产品质量的平均值与方差,并分析哪个车间的产品质量较稳定; 7若一组数据12,,nx x x 的平均数为4,方差为2,则1262,62,,62n x x x --- 的平均数为 ,标准差为 .8.在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A.92 ,2B.92,2.8C.93 ,2D.93 , 2. 9.甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图,则甲班、乙班的最高成绩各是 ,从图中看 班的平均成绩较高。
数学(高二上)导学案必修三第二章第二节课题:用样本估计总体二、合作探究归纳展示任务1 标准差问题平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只有平均数还难以概括样本数据的实际状态.如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲:7879549107 4乙:9578768677如果你是教练,你应当如何对这次射击作出评价?思考1甲、乙两人本次射击的平均成绩分别为多少环?答经计算得:x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.思考2观察下图中两人成绩的频率分布条形图,你能说明其水平差异在哪里吗?答直观上看,还是有差异的.如:甲成绩比较分散,乙成绩相对集中.思考3对于甲乙的射击成绩除了画出频率分布条形图比较外,还有没有其它方法来说明两组数据的分散程度?答还经常用甲乙的极差与平均数一起比较说明数据的分散程度.甲的环数极差=10-4=6,乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.思考4 如何用数字去刻画这种分散程度呢?答 考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示 . 思考5 所谓“平均距离”,其含义如何理解?答 假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ).于是,样本数据是x 1,x 2,…,x n 到x 的“平均距离”是S =|x 1-x |+|x 2-x |+…+|x n -x |n .由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 思考6 标准差的取值范围如何?若s =0表示怎样的意义?答 从标准差的定义可以看出,标准差s ≥0,当s =0时,意味着所有的样本数据等于样本平均数. 任务2 方差思考1 方差的概念是怎样定义的?答 人们有时用标准差的平方s 2—方差来代替标准差,作为测量样本数据分散程度的工具,方差:s 2=1n ·[(x 1-x )2+(x 2-x )2+…+(x n -x )2].思考2 对于一个容量为2的样本:x 1,x 2(x 1<x 2),它们的平均数和标准差如果分别用x 和a 表示,那么x 和a 分别等于什么? 答 x =12(x 1+x 2),a =12(x 2-x 1).思考3 在数轴上,x 和a 有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?答 x 和a 的几何意义如下图所示.说明了标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.思考4 现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?答 通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.例1求出问题中的甲乙两运动员射击成绩的标准差,并说明他们的成绩谁比较稳定?解x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.根据标准差的公式,s甲=110[(7-7)2+(8-7)2+…+(4-7)2]=2;同理可得s乙≈1.095.所以s甲>s乙.因此说明甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.跟踪训练1如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案 6.8任务3标准差及方差的应用例2画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.解四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.跟踪训练2从甲、乙两种玉米中各抽10株,分别测得它们的株高如下:甲:25、41、40、37、22、14、19、39、21、42;乙:27、16、44、27、44、16、40、40、16、40;(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=30,x乙=110(27+16+44+27+44+16+40+40+16+40)=31,x甲<x乙.即乙种玉米的苗长得高.(2)由方差公式得:s2甲=110[(25-30)2+(41-30)2+…+(42-30)2]=104.2,同理s2乙=128.8,∴s2甲<s2乙.即甲种玉米的苗长得齐.答乙种玉米苗长得高,甲种玉米苗长得齐.例3甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.4625.3225.4525.3925.3625.3425.4225.4525.3825.4225.3925.4325.3925.4025.44的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.四、作业布置 1、基础知识:1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 答案 B2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A.1169B.367C .36D.677答案 B3.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13B .2,1C .4,13D .4,3答案 D4.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.。
§2.2.2用样本的数字特征估计总体的数字特征学习目标(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
重点难点重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
学法指导在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
知识链接用样本的频率分布去估计总体的分布,当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
问题探究一、情景设置:美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.二、探究新知:知识探究(一):众数、中位数和平均数思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?思考2:在城市居民月均用水量样本数据的频率分布直方图中(参考课本72页图2-2-5),你认为众数应在哪个小矩形内?由此估计总体的众数是什么?思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少? 思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?思考7:从居民月均用水量样本数据可知,该样本的众数是 2.3,中位数是 2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?知识探究(二):标准差样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7甲、乙两人本次射击的平均成绩分别为多少环?思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?思考3:对于样本数据x1,x2,…,xn ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?频率0.4 0.3 0.2 0.1 4 5 6 7 8 9 10 环数O (甲)环数 频率 0.40.3 0.2 0.14 5 6 7 8 9 O (乙)思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x1,x2,…,nx 的平均数为,则标准差的计算公式是:那么标准差的取值范围是什么?标准差为0的样本数据有何特点?思考5:对于一个容量为2的样本:()1212,x x x x 〈, 则1221,22x x x x x s +-==在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?知识补充:1.标准差的平方称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.3.对于城市居民月均用水量样本数据,其平均数 1.973x =,标准差s=0.868.在这100个数据中,落在区间(),x s x s -+=[1.105,2.841]外的有28个;落在区间()2,2x s x s -+=[0.237,3.709]外的只有4个; 落在区间()3,3x s x s -+=[-0.631,4.577]外的有0个.一般地,对于一个正态总体,数据落在区间(),x s x s -+、()2,2x s x s -+、()3,3x s x s -+内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅读与思考”).三、典例分析:例 1 计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性.甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7例 2 画出下列四组样本数据的条形图,说明他们的异同点. (1) 5,5,5,5,5,5,5,5,5;(2) 4,4,4,5,5,5,6,6,6;(3) 3,3,4,4,5,6,6,7,7;(4) 2,2,2,2,5,8,8,8,8.分析:先画出数据的直方图,22212()()()n x x x x x x s n-+-++-=L根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差。
2.2.2用样本数字特征估计总体的数字特征一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。
二、【学习目标】1、理解样本数据的平均数、方差、标准差的意义和作用,学会计算数据的平均数、方差、标准差,并使学生领会通过合理的抽样对总体的稳定性水平作出科学的估计的思想。
2、掌握从实际问题中提取数据,利用样本数据计算方差,标准差,并对总体稳定性水平估计的方法。
三、自主学习 ①.样本平均数:)(1321n x x x x nx ++++=-- ②.方差和标准差计算公式:设一组样本数据n 21x ,,x ,x ,其平均数为x ,则 样本方差:s 2=n1〔(x 1—x )2+(x 2—x )2+…+(x n —x )2〕 样本标准差:s=])x x ()x x ()x x [(n12n 2221----++-+- 方差和标准差的意义:描述一个样本和总体的波动大小的特征数。
标准差大说明波动大。
【典例分析】例1: 要从甲乙两名跳远运动员中选拔一名去参加运动会,选拔的标准是:先看他们的平均成绩,如果两人的平均成绩相差无几,就要再看他们成绩的稳定程度。
为此对两人进行了15次比赛,得到如下数据:(单位:cm ):甲 755 752 757 744 743 729 721 731 778 768 761 773 764 736 741 乙 729 767 744 750 745 753 745 752 769 743 760 755 748 752 747如何通过对上述数据的处理,来作出选人的决定呢?例2:证明方差的两个性质①.若给定一组数据n 21x ,,x ,x ,方差为s 2, 则n 21ax ,ax ,ax 的方差为22s a②.若给定一组数据n 21x ,,x ,x ,方差为s 2, 则b ax ,b ax ,b ax n 21+++ 的方差为22s a ;四、合作探究1.若821k ,,k ,k 的方差为3,则)3k (2,),3k (2),3k (2821--- 的方差为________. 2.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:7.9,4.9,6.9,9.9,4.9,4.8,4.9,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( ) A .484.0,4.9 B .016.0,4.9 C .04.0,5.9 D .016.0,5.9 3. 从甲乙两个总体中各抽取了一个样本:甲 6 5 8 4 9 6 乙876582根据以上数据,说明哪个波动小?4.甲乙两人在相同条件下个射击20次,命中的环数如下:甲 7 8 6 8 6 5 9 10 7 4 5 6 6 7 8 7 9 10 9 6 乙 9 5 7 8 7 6 8 6 7 7 9 6 5 8 6 9 6 8 7 7问谁射击的情况比较稳定?5.为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲 12 13 14 15 10 16 13 11 15 11 乙111617141319681016哪种小麦长得比较整齐?6.从A 、B 两种棉花中各抽10株,测得它们的株高如下:(CM) A 、 25 41 40 37 22 14 19 39 21 42 B 、 27 16 44 27 44 16 40 16 40 40 (1) 哪种棉花的苗长得高?(2) 哪种棉花的苗长得整齐?【拓展尝新】7.“用数据说话”,这是我们经常可以听到的一句话,但数据有时也会被利用,从而产生误导。
班级: 小组: 姓名: 编号: bx3 - 15课题:2.2.2用样本的数字特征估计总体的数字特征主备 审核 高一数学备课组 学科领导 学习目标:1.能利用频率分布直方图估计总体的众数、中位数、平均数;2.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;3.会用样本的基本数据特征估计总体的基本数据特征。
学习重点:根据实际问题对样本数据中提取基本的数据特征并作出合理解释,估计总体的基本数据特征. 学习难点:体会样本数据特征具有随机性. 导学流程: 一. 了解感知阅读课本P72-73,了解如何从频率分布直方图中估计众数、中位数、平均数? 阅读课本P724-78,了解感知标准差和方差。
1、在一组数据中,出现次数 的数据叫做这组数据的众数。
一组数据中的众数可能 一个 也可能没有,反映了该组数据的 ,在频率分布直方图中,众数估计值是面积最大矩形的 。
2、将一组数据按从小到大的顺序依次排列,把处在 位置的一个数据(或中间两个数的 )叫做这组数的中位数。
一组数据中的中位数是 ,反映了该组数据的 集中趋势。
在频率分布直方图中,中位数左边和右边的直方图的面积 。
3、如果有n 个数n x x x ,,,21 ,那么_x = 叫做这n 个数的平均数。
平均数描述了数据的平均水平,是一组数据的中心,定量的反映了数据的集中趋势所处的水平。
因此频率分布直方图中 即可以看做直方图的平均数。
4、考察样本数据分散程度的大小最常用的统计量是 ,它是样本数据到平均数的一种平均距离,一般用s 来表示,s= 。
标准差的平方叫做方差,2s = 。
5、标准差、方差越大,数据的离散程度越 ;标准差、方差越小,数据的离散程度越 ,稳定性越好。
二.深入学习例1、画出下列四组样本数据的条形图,说它们的异同点。
(1) 5, 5, 5, 5, 5, 5, 5, 5, 5; (2) 4, 4, 4, 5, 5, 5, 6, 6, 6; (3) 3, 3, 4, 4, 5, 6, 6, 7, 7; (4) 2, 2, 2, 2, 5, 8, 8, 8, 8.例2、甲乙两人同时生产内径为25.40mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出20个,量得其内径尺寸如此下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.4225.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39 乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48三.迁移运用1、P74练习;2、P79练习1。
§2.2.2 用样本的数字特征估计总体的数字特征1 授课时间第周星期第节课型新授课主备课人学习目标1.掌握平均数、中位数、众数、极差、方差、标准差的计算、意义和作用;2.根据问题的需要选择适当的数字特征来表达数据的信息.重点难点根据问题的需要选择适当的数字特征来表达数据的信息.学习过程与方法自主学习复习回顾1.什么叫平均数?有什么意义?2.什么叫中位数?有什么意义?3.什么叫众数?有什么意义?练习1:某公司员工的月工资情况如表所示:月工资/元8000 5000 4000 2000 1000 800 700 600 500员工/人 124 6 12 8 205 2(1)分别计算该公司员工月工资的平均数、中位数、和众数。
(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?【解】4.什么叫极差?有什么意义?5.什么叫方差?有什么意义?练习2:在上一节中,从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图(1)甲乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲乙两组数据平均数和方差的大小吗?精讲互动例1 甲、乙两台机床同时生产直径是40mm的零件。
为了检验产品质量,从两台机床生产抽取10件进行测量,结果如下表所示甲40.0 39.8 40.1 40.2 39.9 40.0 40.2 39.8 40.2 3940.0 39.9 40.1 40.1 40.1 40.0 39乙40.0 40.0 399(1)你能选择适当的数分别表示这两组数据的离散程度吗?提出问题:什么叫标准差?有什么意义?(2)分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差达标训练1.课本31页练习2. 教辅资料。
2.2.2 用样本的数字特征估计总体的数字特征学习目标1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.会用样本的基本数字特征来估计总体的基本数字特征.知识点一 众数、中位数、平均数 众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.思考 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点? 答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大. 知识点二 方差、标准差 标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示. s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x . 知识拓展:平均数、方差公式的推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a , mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a . (2)设数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则①s 2=1n[(x 21+x 22+…+x 2n )-n x 2]; ②数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ③数据ax 1,ax 2,…,ax n 的方差为a 2s 2;④数据ax 1+b ,ax 2+b ,…,ax n +b 的方差也为a 2s 2,标准差为as .1.中位数是一组数据中间的数.( × ) 2.众数是一组数据中出现次数最多的数.( √ )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ ) 4.一组数据的标准差不大于极差.( √ )题型一 众数、中位数、平均数的计算例1 (1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( ) A .85,85,85 B .87,85,86 C .87,85,85D .87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8 答案 (1)C (2)C解析 (1)平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85.(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x ,所以x =5.又乙组数据的平均数为9+15+(10+y )+18+245=16.8,所以y =8,所以x ,y 的值分别为5,8.反思感悟 平均数、众数、中位数的计算方法平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:分别求这些运动员成绩的众数、中位数与平均数.解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m). 故17名运动员成绩的众数、中位数、平均数依次为1.75m ,1.70m,1.69m. 题型二 标准差、方差的计算及应用例2 甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适? 解 (1)x 甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环), x乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环). (2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3,s 2乙=1.2. (3)x甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙说明甲战士射击情况波动比乙大. 因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛. 反思感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散. (3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110 115 90 85 75 115 110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100; x乙=17(110+115+90+85+75+115+110)=100; s 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.频率分布直方图与数字特征的综合应用典例 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数; (2)求这次测试数学成绩的中位数. 解 (1)知众数为70+802=75.(2)设中位数为x ,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x -70),所以x ≈73.3. 引申探究1.若本例条件不变,求数学成绩的平均分. 解 由题干图知这次数学成绩的平均分为40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.2.本例条件不变,求80分以上(含80分)的学生人数. 解 [80,90)分的频率为0.025×10=0.25, 频数为0.25×80=20.[90,100]分的频率为0.005×10=0.05, 频数为0.05×80=4.所以80分以上的学生人数为20+4=24.[素养评析] (1)利用频率分布直方图估计总体数字特征①众数是最高的矩形的底边中点的横坐标;②中位数左右两侧直方图的面积相等;③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.(3)在解决本题时,需要选择运算方法,掌握运算法则,求得运算结果,并根据结果进行合理推断,获得结论.这些都是数学核心素养的内含所在.1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.19 B.20C.21.5 D.23答案 B解析由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.2.下列关于平均数、中位数、众数的说法中正确的一个是()A.中位数可以准确地反映出总体的情况B.平均数可以准确地反映出总体的情况C.众数可以准确地反映出总体的情况D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案 D3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数B .平均数C .中位数D .标准差 答案 D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m 的值有关 答案 B解析 由茎叶图知,a 1=80+1+5+5+4+55=84,a 2=80+4+4+6+4+75=85,故选B.5.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8, 可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s =16.高中数学必修三导学案1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.11。
《 2.2.2 用样本的数字特征估计总体的数字特征》第 2 课时导学案编写人:宋冬冬审核人:范志颖审批人:袁辉【学法指导】1.认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;3.课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己!【学习过程】温故而知新1. 众数2.中位数3.平均数4. 众数、中位数、平均数与频率分布直方图的关系5. 三种数字特征的优缺点思考探究:例某工厂人员及工资构成如下:(1)指出这个问题中周工资的众数、中位数、平均数(2)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?当堂检测1. 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有()A. a>b>cB. b>c>aC. c>a>bD. c>a>b2.. 为了判断甲、乙两名同学本学期几次数学考试成绩哪个较稳定,通常需要知道这两个人的()A. 平均数B. 众数C. 标准差D. 频率分布3. 某班学生体检中检查视力的结果如下表,从表中可以看出,全班视力数据的众数是()A. 0.9B. 1.0C. 20%D. 65%4.梅峰中学高一学生举行跳绳比赛,从7、8两个班级中各抽15名男生、12名女生进行一分钟跳绳次数测试,测试数据统计结果如下表。
如果每分钟跳绳次数≥105次的为优秀,那么7、8两班的优秀率的关系是()A. 7<8B. 7>8C. 7=8D. 无法比较。
2.2.2 用样本的数字特征估计总体的数字特征编制人:朱朝辉邓林萍审核人:高一数学备课组备课组长签字:科组长签字:【课标要求】能根据实际问题合理选取样本,提取计算样本数据的基本数字特征(如平均数、标准差),进而估计总体的基本数字特征。
【学法指导】1.阅读探究课本P71-P78中的内容,熟记基础知识,自主高效预习。
2.完成教材思考问题,结合课本基础知识和例题,完成预习自测题。
【学习目标】1.能根据实际问题的需要合理选择样本,从样本数据中提取计算基本的数字特征(如平均数、标准差等)。
2.会用样本的基本数字特征估计总体的数字特征及初步体会样本的数字特征的随机性。
3.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
【课前预习】一、预习内容:阅读课本P71-P78二、完成下列问题:1.数据的众数、中位数、平均数的概念2.考察样本数据分散程度的大小最常用的统计量是,它是样本数据到平均数的一种平均距离,一般用s来表示,s= 标准差的平方叫做方差,2s= 3.标准差、方差越大,数据的离散程度越;标准差、方差越小,数据的离散程度越,稳定性越好。
【课内探究】一、那么如何从频率分布直方图中估计众数、中位数、平均数呢?二、讨论三种数字特征的优缺点:1.众数体现样本数据的最大集中点,但它对其它数据信息的忽视使得无法客观地反映总体特2.中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响。
3.平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大。
三、标准差,方差的取值范围是什么?标准差、方差为0的数据有何特点?(1)指出这个问题中周工资的众数、中位数、平均数(2)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?例题2从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中环数如下: 甲 7 8 6 8 6 5 9 10 7 4 乙 9 5 7 8 7 6 8 6 7 7(1)计算甲乙两人射击命中环数的平均数和标准差 (2)比较两人的成绩,然后决定选择哪一人参赛【巩固训练】1.某篮球队在一个赛季的十场比赛中分别进球:30,35,,25,25,30,34,26,25,29,21,则该队平均每场进求x = 个,标准差s= 。
高二数学 2.2.2 用样本的数字特征估计总体的数字特征学案2、2、2 用样本的数字特征估计总体的数字特征【学习目标】1、知道样本的平均数、样本的方差,样本标准差的定义;2、会计算样本平均数和样本标准差;3、通过实例清楚样本数据表准差的作用、【重点难点】重点:通过样本的方差,样本标准差估计总体;难点:理解样本标准差的意义与作用、【导学过程】(一)自主学习(预习导读5分钟左右)(二)小组合作学习(7分钟左右)1、众数:一组数据中重复出现次数最多的数。
2、中位数:把一组数据按从大到小顺序排列,处在__________位置的一个数据(或两个数据的平均数)3、平均数:如果有n个数那么这n个数的平均数__________。
4、标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s表示,。
5、方差的计算公式标准差的平方叫方差。
=__________________ 其中,是_________,n是__________,是_____________。
思考:由频率分布直方图求得的中位数与样本的中位数值一样吗?(三)课堂学习整合(教师指导20分钟左右)典型例题例1个体户王某经营一家餐馆,下面是餐馆所有工作人员在某个月份的工资:王某厨师甲厨师乙杂工招待甲招待乙会计3000元450元400元320元350元320元410元班级小组姓名________(1) 计算所有工作人员工资的平均数,众数,中位数;(2)计算出平均工资能否反映帮工人员这个月收入的一般水平?(3)去掉王某的工资后,再计算工资的平均数,众数,中位数;(4)后一个平均工资能代表帮工人员的收入吗?(5)根据以上计算,从统计的观点看,你对(1),(3)的结果有什么看法?例2 甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量,数据为:甲:9910098100100103 乙:9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定。
2.2.2 用样本的数字特征估计总体的数字特征自主学习学习目标 1.能根据实际问题的需要合理选择样本,从样本数据中提取基本的数字特征(如平均数、众数等),并做出合理解释.2.会用样本的基本数字特征估计总体的数字特征.3.进一步体会样本估计总体的思想,解决一些实际问题.自学导引1.设样本数据为x 1,x 2,…,x n ,则样本数据的平均数为x =x 1+x 2+…+x nn,它描述了数据的数值____________,定量地反映数据的集中趋势所处的水平.在频率分布直方图中,平均数是直方图的________.2.数据的离散程度可以用________、________或________来描述,样本方差描述了一组数据围绕________波动的大小.一般地设样本元素为x 1,x 2,…,x n 样本平均数为x ,则方差s 2=________________________,标准差s =________________________________.对点讲练知识点一 平均数的计算例1 某班在一次数学竞赛中有10名同学参加(满分150分).成绩分别如下: 118,119,120,122,117, 125,117,120,125,117.问10名参赛学生的平均成绩是多少?点评 在一般情况下,要计算一组数据的平均数可使用平均数计算公式;当数据较大,且大部分数据在某一常数左右波动时,方法二可以减少运算量,所以此法比较简便.变式迁移1 若x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数分别是x 和y ,试求出下列几组数据的平均数.(1)3x 1,3x 2,…,3x n ;(2)x 1-y 1,x 2-y 2,…,x n -y n ; (3)2x 1+m,2x 2+m ,…,2x n +m .知识点二 方差、标准差的计算例2甲机床加工直径为100 mm的零件,现从产品中随机抽出6件进行测量,测得如下数据(单位:mm):99,100,98,100,100,103.计算上述数据的方差和标准差(标准差结果精确到0.1).点评首先计算出平均数,然后根据数据的特点,可以直接利用公式求出方差和标准差,或对公式进行合理变形(如s2=1n[(x21+x22+…+x2n)-n x2]),从而使运算更简便.变式迁移2乙机床加工直径为100 mm的零件,现从产品中随机抽出6件进行测量,测得如下数据(单位:mm):99,100,102,99,100,100.(1)计算上述数据的方差和标准差(标准差精确到0.1).(2)据计算结果与例题中甲机床比较,说明哪一台机床加工这种零件更符合要求.知识点三用样本的数字特征估计总体的数字特征例3从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm)甲:25 41 40 37 22 14 19 39 21 42乙:27 16 44 27 44 16 40 40 16 40问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?点评特别要注意本题两问中说法的不同,这就意味着计算方式不一样.平均数和方差是样本的两个重要数字特征,方差越大,表明数据越分散;相反地,方差越小,数据越集中.变式迁移3甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差;(3)根据计算结果,估计一下两名战士的射击情况.(1)平均数与每一个样本的数据有关,任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.(2)标准差反映了各个样本数据聚集于样本平均数周围的程度.标准差越小,表明各个样本数据在样本平均数的周围越集中;反之,表明各个样本数据在样本平均数的周围越分散.课时作业一、选择题1.期中考试以后,班长算出了全班40个人数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M ∶N 为( )A.4041 B .1 C.4140D .2 2.与原始数据单位不一致的样本数据是( ) A .众数 B .中位数 C .标准差 D .方差3.在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .92,2 B .92,2.8 C .93,2 D .93,2.84.某中学人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为x甲=82分,x 乙=82分,s 2甲=245,s 2乙=190,那么成绩较为整齐的是( )A .甲班B .乙班C .两班一样齐D .无法确定5.下图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4二、填空题6.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=______.7.如果数据x1,x2,x3,…,x n的平均数为10,方差为2,则数据7x1-2,7x2-2,7x3-2,…,7x n-2的平均数为________,方差为________.8.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x及其标准差s如下表所示,则选送决赛的最佳人选应是________.三、解答题9.某校团委为响应顺义区倡导的“我与奥运同行,人人爱护环境”的号召,举办了英语口语竞赛.甲、乙两个小组成绩如下:甲组:76908486818786乙组:82848589809476(1)分别求出甲、乙两个小组的平均分、标准差(精确到0.01);(2)说明哪个小组成绩比较稳定?10.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换,已知某校使用的100(1)(2)若定期更换,可选择多长时间统一更换合适?2.2.2用样本的数字特征估计总体的数字特征自学导引1.平均水平 平衡点2.极差 方差 标准差 平均数(x 1-x )2+(x 2-x )2+…+(x n -x )2n (x 1-x )2+(x 2-x )2+…+(x n -x )2n对点讲练例1 解 方法一 利用平均数的公式计算x =110×(118+119+120+…+125+117)=110×1 200=120. 方法二 建立新数据,再利用平均数简化公式计算. 取a =120,将上面各数据同时减去120,得到一组新数据:-2,-1,0,2,-3,5,-3,0,5,-3.x ′=110×(-2-1+0+2-3+5-3+0+5-3)=0,∴x =x ′+a =0+120=120.答 该班10名参赛学生的平均成绩是120分.变式迁移1 解 (1)1n×(3x 1+3x 2+…+3x n )=3×1n ×(x 1+x 2+…+x n )=3x ;(2)1n ×[(x 1-y 1)+(x 2-y 2)+…+(x n -y n )] =1n ×(x 1+x 2+…+x n )-1n ×(y 1+y 2+…+y n ) =x -y ; (3)1n ×[(2x 1+m)+(2x 2+m)+…+(2x n +m)] =1n ×(2x 1+2x 2+…+2x n )+1n ×nm =2×1n ×(x 1+x 2+…+x n )+m=2x +m.例2 解 ①x 甲=100+16×(-1+0-2+0+0+3)=100(mm ).②计算x i -x 甲(i =1,2,…,6)得数据分别为-1,0,-2,0,0,3.③计算(x i -x 甲)2(i =1,2,…,6)得数据分别为1,0,4,0,0,9.④计算方差s 2甲=16×(1+0+4+0+0+9)=73(mm 2).⑤计算标准差s 甲= 73≈1.5(mm ).所以这组数据的方差为73,标准差约为1.5.变式迁移2 解 (1)x 乙=100+16×(-1+0+2-1+0+0)=100(mm ).∵x i -x 乙(i =1,2,……,6)所得数据分别为-1,0,2,-1,0,0. ∴(x i -x 乙)2(i =1,2,…,6)所得数据分别为1,0,4,1,0,0.所以s 2乙=16×(1+0+4+1+0+0)=1(mm )2, s 乙=1(mm ).(2)由上述计算结果可知,x 甲=x 乙,s 甲>s 乙.∴乙机床加工这种零件更符合要求.例3 解 (1)x 甲=110×(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm ),x 乙=110×(27+16+44+27+44+16+40+40+16+40)=110×310=31 (cm ). ∴x 甲<x 乙.(2)s 2甲=110×[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110×(25+121+100+49+64+256+121+81+81+144) =110×1 042=104.2 (cm 2), s 2乙=110×[(2×272+3×162+3×402+2×442)-10×312]=110×1 288=128.8 (cm 2). ∴s 2甲<s 2乙.答 乙种玉米的苗长得高,甲种玉米的苗长得整齐.变式迁移3 解 (1)x 甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环),x 乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环).(2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3.0(环2),s 2乙=1.2(环2).(3)x 甲=x 乙,说明甲、乙两战士的平均水平相当;s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定. 课时作业1.B [N =40M +M41=M ,∴M ∶N =1.]2.D3.B [去掉最高分95和最低分89后,剩余数据的平均数为x =90+90+93+94+935=92,方差为s 2=15[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15(4+4+1+4+1)=2.8.]4.B5.C [去掉最高分93,最低分79,平均分为15×(84+84+86+84+87)=85,方差s 2=15×[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=85=1.6.]6.15 7.68 98解析 平均数=7×10-2=68,方差=72×2=98. 8.乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好.9.解 (1)x 甲=17×(76+90+84+86+81+87+86)≈84.29,x 乙=17×(82+84+85+89+80+94+76)≈84.29,s 甲= 17×[(762+902+842+862+812+872+862)-7×84.292]≈4.15,s 乙= 17×[(822+842+852+892+802+942+762)-7×84.292]≈5.40.(2)∵s 甲<s 乙,∴甲小组的成绩比较稳定.10.解 (1)各组中值分别为165,195,225,255,285,315,345,375,由此可算得平均数约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天).(2)将组中值对于此平均数求方差: 1100×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60(天2)故标准差为 2 128.60≈46(天).答 估计这种日光灯的平均使用寿命约为268天,标准差约为46天,故可在222天到314天左右统一更换较合适.。
用样本的数字特征估计总体的数字特征导预习一、预习目标:通过预习,初步理解众数、中位数、平均数、标准差、方差的概念。
二、预习内容:1、知识回顾:作频率分布直方图分几个步骤?各步骤需要注意哪些问题?2、众数、中位数、平均数的概念众数:____________________________________________________________________ 中位数: 平均数:3.众数、中位数、平均数与频率分布直方图的关系:众数在样本数据的频率分布直方图中,就是 _________________________ 中位数左边和右边的直方图的________应该相等,由此可估计中位数的值。
平均数是直方图的___________.4.标准差、方差标准差 s=_________________________________________________________________ 方差s2=_________________________________________________________________ 导课堂目标展示1. 能说出样本数据标准差的意义和作用,会计算数据的标准差2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
预习检测1.众数、中位数、平均数思考1:分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么问题?为什么会这样呢?思考2:你能说说这几个数据在描述样本信息时有什么特点吗?由此你有什么样的体会?假如你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,其中一条新公路的建设投资为2000万元人民币,另外25个项目的投资是20~100万元。
中位数是25万元,平均数是100万元,众数是20万元。
2.2.2 用样本的数字特征估计总体的数字特征整体设计教学分析教科书结合实例展示了频率分布的众数、中位数和平均数.对于众数、中位数和平均数的概念,重点放在比较它们的特点,以及它们的适用场合上,使学生能够发现,在日常生活中某些人通过混用这些(描述平均位置的)统计术语进行误导.另一方面,教科书通过思考栏目让学生注意到,直接通过样本计算所得到的中位数与通过频率直方图估计得到的中位数不同.在得到这个结论后,教师可以举一反三,使学生思考对于众数和平均数,是否也有类似的结论.进一步,可以解释对总体众数、总体中位数和总体平均数的两种不同估计方法的特点.在知道样本数据的具体数值时,通常通过样本计算中位数、平均值和众数,并用它们估计总体的中位数、均值和众数.但有时我们得到的数据是整理过的数据,比如在媒体中见到的频数表或频率表,用教科书中的方法也可以得到总体的中位数、均值和众数的估计.教科书通过几个现实生活的例子,引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征.通过对如何描述数据离散程度的探索,使学生体验创造性思维的过程.教科书通过例题向学生展示如何用样本数字特征解决实际问题,通过阅读与思考栏目“生产过程中的质量控制图”,让学生进一步体会分布的数字特征在实际中的应用.三维目标1.能利用频率分布直方图估计总体的众数、中位数、平均数;能用样本的众数、中位数、平均数估计总体的众数、中位数、平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法;初步体会、领悟“用数据说话”的统计思想方法;通过对有关数据的搜集、整理、分析、判断,培养学生“实事求是”的科学态度和严谨的工作作风.2.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.3.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.重点难点教学重点:根据实际问题对样本数据中提取基本的数据特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.教学难点:用样本平均数和标准差估计总体的平均数与标准差;能应用相关知识解决简单的实际问题.课时安排2课时教学过程第1课时众数、中位数、平均数导入新课思路1在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员:7,8,6,8,6,5,8,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究.——用样本的数字特征估计总体的数字特征.(板书课题)思路2在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.推进新课新知探究提出问题(1)什么是众数、中位数、平均数?(1)如何绘制频率分布直方图?(3)如何从频率分布直方图中估计众数、中位数、平均数?活动:那么学生回忆初中所学的一些统计知识,思考后展开讨论,教师提示引导.讨论结果:(1)初中我们曾经学过众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数称为中位数)、平均数(一般是一组数据和的算术平均数)等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息. (2)画频率分布直方图的一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.(3)教材前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25 t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25 t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.请大家翻回到课本看看原来抽样的数据,有没有 2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失了,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.思考:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)课本显示,大部分居民的月均用水量在中部(2.02 t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)对极端值不敏感有利的例子:考察课本中表21中的数据,如果把最后一个数据错写成22,并不会对样本中位数产生影响.也就是说对极端数据不敏感的方法能够有效地预防错误数据的影响,而在实际应用中,人为操作的失误经常造成错误数据.对极端值不敏感有弊的例子:某人具有初级计算机专业技术水平,想找一份收入好的工作,这时如果采用各个公司计算机专业技术人员收入的中位数作为选择工作的参考指标就会冒这样的风险:很可能所选择公司的初级计算机专业技术水平人员的收入很低,其原因是中位数对极小的数据不敏感.这里更好的方法是同时用平均工资和中位数来作为参考指标,选择平均工资较高且中位数较大的公司就业.对极端值不敏感的方法,不能反映数据中的极端情况.同样的,可以从频率分布直方图中估计平均数,上图就显示了居民用水的平均数,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.由估计可知,居民的月均用水量的平均值为2.02 t.显示了居民月均用水量的平均数,它是频率分布直方图的“重心”.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.从图上可以看出,用水量最多的几个居民对平均数影响较大,这是因为他们的月均用水量与平均数相差太多了.利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点) 估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 总之,众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.应用示例思路1例1 (1)若M 个数的平均数是X,N 个数的平均数是Y,则这M+N 个数的平均数是___________;(2)如果两组数x 1,x 2,…,x n 和y 1,y 2,…,y n 的样本平均数分别是x 和y,那么一组数x 1+y 1,x 2+y 2,…,x n +y n 的平均数是___________.活动:学生思考或交流,教师提示,根据平均数的定义得到结论.解:(1)NM NY MX ++; (2)2y x +. 例2 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.甲班:112 86 106 84 100 105 98 102 94 10787 112 94 94 99 90 120 98 95 119108 100 96 115 111 104 95 108 111 105104 107 119 107 93 102 98 112 112 9992 102 93 84 94 94 100 90 84 114乙班:116 95 109 96 106 98 108 99 110 10394 98 105 101 115 104 112 101 113 96108 100 110 98 107 87 108 106 103 97107 106 111 121 97 107 114 122 101 107107 111 114 106 104 104 95 111 111 110分析:我们可用一组数据的平均数衡量这组数据的集中水平,因此,分别求出甲、乙两个班的平均分即可.解:用计算器分别求出甲班的平均分为101.1,乙班的平均分为105.4,故这次考试乙班成绩要好于甲班.思路2例1 下面是某校学生日睡眠时间抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.睡眠时间人数频率[6,6.5) 5 0.05[6.5,7) 17 0.17[7,7.5) 33 0.33[7.5,8) 37 0.37[8,8.5) 6 0.06[8.5,9) 2 0.02合计100 1分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间,由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示.解法一:总睡眠时间约为6.25×5+6.75×17+7.25×33+7.75×37+8.25×6+8.75×2=739(h),故平均睡眠时间约为7.39 h.解法二:求组中值与对应频率之积的和6.25×0.05+6.75×0.17+7.25×0.33+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h). 答:估计该校学生的日平均睡眠时间约为7.39 h.例2 某单位年收入在10 000到15 000、15 000到20 000、20 000到25 000、25 000到30 000、30 000到35 000、35 000到40 000及40 000到50 000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.分析:上述百分比就是各组的频率.解:估计该单位职工的平均年收入为12 500×10%+17500×15%+22 500×20%+27 500×25%+32 500×15%+37 500×10%+45 000×5%=26 125(元).答:估计该单位人均年收入约为26 125元.知能训练从甲、乙两个公司各随机抽取50名员工月工资:甲公司:800 800 800 800 800 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 0001 2001 2001 2001 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 5001 500 1 500 1 500 1 500 1 500 1 5002 000 2 000 2 0002 000 2 000 2 500 2 500 2 500乙公司:700 700 700 700 700 700 700 700 700700 700 700 700 700 700 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 6 000 8 000 10 000试计算这两个公司50名员工月工资平均数、众数、中位数,并估计这两个企业员工平均工资. 答案:甲公司:员工月工资平均数1 240,众数1 200,中位数1 200;乙公司:员工月工资平均数1 330,众数1 000,中位数1 000;从总体上看乙公司员工月工资比甲公司少,原因是乙公司有几个收入特高的员工影响了工资平均数.拓展提升“用数据说话”, 这是我们经常可以听到的一句话.但是,数据有时也会被利用,从而产生误导.例如,一个企业中,绝大多数是一线工人,他们的年收入可能是一万元左右,另有一些经理层次的人,年收入可以达到几十万元.这时,年收入的平均数会比中位数大得多.尽管这时中位数比平均数更合理些,但是这个企业的老板到人力市场去招聘工人时,也许更可能用平均数来回答有关工资待遇方面的提问.你认为“我们单位的收入水平比别的单位高”这句话应当怎么解释?这句话的目的是谨防利用人们对统计术语的模糊认识进行误导(蒙骗).使学生能够正确理解在日常生活中像“我们单位的收入水平比别的单位高”这类话的模糊性,这里的“收入水平”是指员工收入数据的某个中心点,即可以是中位数、平均数或众数,不同的解释有不同的含义.在这里应该注意以下几点:1.样本众数通常用来表示分类变量的中心值,容易计算,但是它只能表达样本数据中的很少一部分信息,通常用于描述分类变量的中心位置.2.中位数不受少数几个极端数据(即排序靠前或排序靠后的数据)的影响,容易计算,它仅利用了数据中排在中间数据的信息.当样本数据质量比较差,即存在一些错误数据(如数据的录入错误、测量错误等)时,应该用抗极端数据强的中位数表示数据的中心值,可以利用计算机模拟样本,向学生展示错误数据对样本中位数的影响程度.3.平均数受样本中的每一个数据的影响,“越离群”的数据,对平均数的影响也越大.与众数和中位数相比,平均数代表了数据更多的信息.当样本数据质量比较差时,使用平均数描述数据的中心位置可能与实际情况产生较大的误差.可以利用计算机模拟样本,向学生展示错误数据对样本平均数的影响程度.在体育、文艺等各种比赛的评分中,使用的是平均数.计分过程中采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止个别裁判的人为因素而给出过高或过低的分数对选手的得分造成较大的影响,从而降低误差,尽量保证公平性4.如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中极端数据的信息,帮助我们作出决策.5.使用者常根据自己的利益去选取使用中位数或平均数来描述数据的中心位置,从而产生一些误导作用.课堂小结1.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(平均数),会用样本的基本数字特征估计总体的基本数字特征;2.平均数对数据有“取齐”的作用,代表一组数据的平均水平;3.形成对数据处理过程进行初步评价的意识.作业习题2.2A组3.设计感想本堂课在初中学习的众数、中位数、平均数的基础上,学习了利用频率分布直方图估计众数、中位数、平均数,这是一种近似估计,但都能说明总体的分布特征,各有优缺点,讲解时紧扣课本内容,讲清讲透,使学生活学活用,会画频率分布直方图,会利用频率分布直方图估计众数、中位数、平均数,对总体作出正确的估计.(设计者:路波)第2课时标准差导入新课思路1平均数为我们提供了样本数据的重要信息,但是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176 cm,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.所以我们学习从另外的角度来考察样本数据的统计量——标准差.(教师板书课题)思路2在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员:7,8,7,9,5,4,9,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?我们知道,x甲=7,x乙=7.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?从上图直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据——标准差.推进新课新知探究提出问题(1)如何通过频率分布直方图估计数字特征(中位数、众数、平均数)?(2)有甲、乙两种钢筋,现从中各抽取一个标本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110 120 130 125 120 125 135 125 135 125 乙115 100 125 130 115 125 125 145 125 145 哪种钢筋的质量较好?(3)某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:600, 880, 880, 620, 960, 570, 900(平均773)乙:800, 860, 850, 750, 750, 800, 700(平均787)请你用所学统计学的知识,说明选择哪种品种推广更好?(4)全面建设小康社会是我们党和政府的工作重心,某市按当地物价水平计算,人均年收入达到1.5万元的家庭即达到小康生活水平.民政局对该市100户家庭进行调查统计,它们的人均收入达到了1.6万元,民政局即宣布该市民生活水平已达到小康水平,你认为这样的结论是否符合实际?(5)如何考查样本数据的分散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?讨论结果:(1)利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. (2)由上图可以看出,乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range).由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.(3)选择的依据应该是,产量高且稳产的品种,所以选择乙更为合理.(4)不符合实际.样本太小,没有代表性.若样本里有个别高收入者与多数低收入者差别太大.在统计学里,对统计数据的分析,需要结合实际,侧重于考察总体的相关数据特征.比如,市民平均收入问题,都是考察数据的分散程度.(5)把问题(3)中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的分散程度小, 如何用数字去刻画这种分散程度呢? 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.标准差:考察样本数据的分散程度的大小,最常用的统计量是标准差(standard deviation).标准差是样本数据到平均数的一种平均距离,一般用s表示.所谓“平均距离”,其含义可作如下理解:假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i=1,2,…,n).于是,样本数据x 1,x 2,…,x n 到x 的“平均距离”是S=nx x x x x x n ||||||21-++-+- . 由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差: s=])()()[(122221x x x x x x nn -++-+- . 意义:标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数.标准差还可以用于对样本数据的另外一种解释.例如,在关于居民月均用水量的例子中,平均数x =1.973,标准差s=0.868,所以x +s=2.841,x +2s=3.709;x -s=1.105,x -2s=0.237.这100个数据中,在区间[x -2s,x +2s ]=[0.237,3.709]外的只有4个,也就是说,[x -2s, x +2s ]几乎包含了所有样本数据.从数学的角度考虑,人们有时用标准差的平方s 2——方差来代替标准差,作为测量样本数据分散程度的工具:s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 显然,在刻画样本数据的离散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.需要指出的是,现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.两者都是描述一组数据围绕平均数波动的大小,实际应用中比较广泛的是标准差.如导入中的运动员成绩的标准差的计算器计算.用计算器计算运动员甲的成绩的标准差的过程如下:即s 甲=2.用类似的方法,可得s 乙≈1.095.由s 甲>s 乙可以知道,甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.应用示例思路1例1 画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.分析:先画出数据的条形图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.例2 甲、乙两人同时生产内径为25.40 mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.46 25.32 25.45 25.39 25.3625.34 25.42 25.45 25.38 25.4225.39 25.43 25.39 25.40 25.4425.40 25.42 25.35 25.41 25.39乙25.40 25.43 25.44 25.48 25.4825.47 25.49 25.49 25.36 25.3425.33 25.43 25.43 25.32 25.4725.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:每一个工人生产的所有零件的内径尺寸组成一个总体.由于零件的生产标准已经给出(内径25.40 mm),生产质量可以从总体的平均数与标准差两个角度来衡量.总体的平均数与内径标准尺寸25.40 mm 的差异大时质量低,差异小时质量高;当总体的平均数与标准尺寸很接近时,总体的标准差小的时候质量高,标准差大的时候质量低.这样,比较两人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可.但是,这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本的平均数、标准差,以此作为两个总体之间差异的估计值.解:用计算器计算可得甲x ≈25.401,乙x ≈25.406;s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40 mm),但是差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.点评:从上述例子我们可以看到,对一名工人生产的零件内径(总体)的质量判断,与所抽取的零件内径(样本数据)直接相关.显然,我们可以从这名工人生产的零件中获取许多样本.这样,尽管总体是同一个,但由于样本不同,相应的样本频率分布与平均数、标准差等都会发生改变,这就会影响到我们对总体情况的估计.如果样本的代表性差,那么对总体所作出的估计就会产生偏差;样本没有代表性时,对总体作出错误估计的可能性就非常大.这也正是我们在前面讲随机抽样时反复强调样本代表性的理由.在实际操作中,为了减少错误的发生,条件许可时,通常采取适当增加样本容量的方法.当然,关键还是要改进抽样方法,提高样本的代表性. 变式训练某地区全体九年级的3 000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3 000名学生的平均分、合格率(60或60分以上均属合格). 解:运用计算器计算得:100450126024701880309012100⨯+⨯+⨯+⨯+⨯+⨯=79.40, (12+30+18+24+12)÷100=96%,所以样本的平均分是79.40分,合格率是96%,由此来估计总体3 000名学生的平均分是79.40分,合格率是96%.思路2例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种第1年 第2年 第3年 第4年 第5年 甲9.8 9.9 10.1 10 10.2 乙 9.4 10.3 10.8 9.7 9.8 解:甲品种的样本平均数为10,样本方差为[(9.8-10)2 +(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24.因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例 2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差. 天数151—180 181—210 211—240 241—270 271—300 301—330 331—360 361—390 灯泡数 1 11 18 20 25 16 7 2 分析:用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命.解:各组中值分别为165,195,225,255,285,315,345,375,由此算得平均数约为165×1%+195 ×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天). 这些组中值的方差为1001×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+。
2.2.2 用样本的数字特征估计总体的数字特征(导学案)
编写人:高一数学备课组 班级 姓名
学习目标:
1、 能根据实际问题的需要合理选择样本,从样本数据中提取基本的数字特征(如平均数、标准
差等);
2、 会用样本的基本数字特征估计总体的数字特征及初步体会杨本的数字特征的随机性;
3、 会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
知识清单:
1、在一组数据中,出现次数 的数据叫做这组数据的众数(若有两个或几个数据出现的最多,且出现的次数一样,则 ;若每个数据出现的次数一样多,则 )。
2、将一组数据按从小到大的顺序依次排列,把处在 位置的一个数据(或中间两个数的 )叫做这组数的中位数。
3、如果有n 个数n x x x ,,,21 ,那么_
x = 叫做这n 个数的平均数。
4、考察样本数据分散程度的大小最常用的统计量是 ,它是样本数据到平均数的一种平均距离,一般用s 来表示,s= 标准差的平方叫做方差,2
s =。
5、标准差、方差越大,数据的离散程度越 ;标准差、方差越小,数据的离散程度越 ,稳定性越好。
教材分析:
1、 理解课本P72-73实例,你认为如何从频率分布直方图中估计众数、中位数、平均数?
2、 解答课本P74练习,归纳三种数字特征的优缺点。
3、 标准差,方差的取值范围是什么?标准差、方差为0的数据有何特点?
4、 解答课本79练习2,归纳计算标准差的步骤。
例题分析:
例1、在一次歌手大赛上,7位评委为某歌手打分如下:9.4, 8.4, 9.4, 9.9, 9.6, 9.4, 9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A 、9.4 , 0.484 B 、9.4 ,0.016 C 、9.5 ,0.04 D 、9.5 ,0.016
(2) 计算出的平均工资能反映所有工作人员这一周收入的一般水平吗?
(3) 去掉总经理的工资后,再计算平均工资,这个平均工资能代表一般工作人员一周的收入
水平吗?
例3、从甲、乙两种玉米苗种各抽10株,分别测得它们的株高如下:(单位:厘米)
甲:41 40 37 22 14 19 39 21 42 乙:16 44 27 44 16 40 40 16 40 问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐?
知能达标:
1、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( )
A 、3.5
B 、--3
C 、3
D 、--0.5
2、甲乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下,甲:6,8,9,9,8;乙:10,7,7,7,9。
则两人射击成绩的稳定程度是( )
A 、甲比乙稳定
B 、乙比甲稳定
C 、甲乙的稳定程度相同
D 、无法比较
3、若数据n x x x ,,,21 的平均数为_
x ,方差为2
s ,则53,,53,5321+++n x x x 的平均数和方差为别为( )
A 、_
x ,2s B 、53_
+x ,2s C 、53_
+x ,29s D 、53_
+x ,253092
++s s 4、下列说法正确的是( )
A 、在两组数据中,平均值较大的一组方差较大;
B 、平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小;
C 、方差的求法是求出各个数据与平均值的差的平方后再求和;
D 、在纪录两个人射击环数的两组数据中,方差大的表示射击水平高。
5、 样本101,98,102,100,99的标准差为 。
(1) 试用上述分组资料来求求病人平均等待时间的估计值_
x 及平均等待时间标准差的估计值S ;
(2) 为更好的服务病人,提高效率,医院部门应如何规定病人等待时间的范围?
高考链接:
A 、3
B 、
5
10
2 C 、
3 D 、58
则有( )
A 、213s s s >>
B 、312s s s >>
C 、321s s s >>
D 、132s s s >> 3、已知样本9,10,11,x ,y 的平均数是10,方差是2,则xy=。