1.2简谐运动的描述
- 格式:ppt
- 大小:1.49 MB
- 文档页数:40
简谐运动的描述引言简谐运动是物理学中一种重要的运动形式,它在自然界和工程领域中都有广泛的应用。
本文将对简谐运动进行详细描述,并深入探讨其特征、数学表达以及应用。
定义简谐运动是一种周期性运动,其特点是运动体沿着某个轴线上往复振动,并且振动的加速度与位移成正比,且恒定。
在简谐运动中,运动体会围绕平衡位置作周期性的振动,如弹簧振子、摆锤等。
特征简谐运动有以下几个主要特征:1.振幅(Amplitude):振幅是指运动体离开平衡位置的最大位移。
它决定了简谐运动的最大振幅。
2.周期(Period):周期是指运动体完成一次完整振动所需的时间。
它与频率的倒数成正比,可以用公式T = 1/f来表示,其中T代表周期,f代表频率。
3.频率(Frequency):频率是指运动体单位时间内振动的次数。
它与周期的倒数成正比,可以用公式f = 1/T来表示,其中f代表频率,T代表周期。
4.相位(Phase):相位是指简谐运动的偏移值,用角度来度量。
在简谐运动中,相位角随时间而变化,可以用公式θ = ωt来表示,其中θ代表相位角,ω代表角频率,t代表时间。
5.动能和势能:在简谐运动中,运动体会交替转化为动能和势能。
当运动体离开平衡位置时,具有最大位移和最大动能;当运动体接近平衡位置时,具有最小位移和最小动能,但具有最大势能。
数学表达简谐运动的数学表达可以通过以下公式得到:1.位移(Displacement):\[x(t) = A \cos(\omega t + \phi)\] 其中,x代表位移,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。
2.速度(Velocity):\[v(t) = -A \omega \sin(\omega t + \phi)\] 其中,v代表速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。
3.加速度(Acceleration):\[a(t) = -A \omega^2 \cos(\omega t + \phi)\] 其中,a代表加速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。
高中物理:简谐运动【知识点的认识】简谐运动1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫简谐运动。
2.简谐运动的描述(1)描述简谐运动的物理量①位移x:由平衡位置指向质点所在位置的有向线段,是矢量。
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
③周期T和频率f:物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数,它们是表示振动快慢的物理量。
二者互为倒数关系。
(2)简谐运动的表达式x=Asin(ωt+φ)。
(3)简谐运动的图象①物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线。
②从平衡位置开始计时,函数表达式为x=Asinωt,图象如图1所示。
从最大位移处开始计时,函数表达式为x=Acosωt,图象如图2所示。
3.简谐运动的回复力(1)定义:使物体返回到平衡位置的力。
(2)方向特点:回复力的大小跟偏离平衡位置的位移大小成正比,回复力的方向总指向平衡位置,即F=﹣kx。
4.简谐运动的能量简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与振幅有关,振幅越大,能量越大。
5.简谐运动的两种基本模型弹簧振子(水平)单摆模型示意图条件忽略弹簧质量、无摩擦等阻力细线不可伸长、质量忽略、无空气等阻力、摆角很小平衡位置弹簧处于原长处最低点回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力周期公式T =2π(不作要求)T =2π能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒【命题方向】常考题型是考查简谐运动的概念:简谐运动是下列哪一种运动()A .匀变速运动B .匀速直线运动C .变加速运动D .匀加速直线运动分析:根据简谐运动的加速度与位移的关系,分析加速度是否变化,来判断简谐运动的性质,若加速度不变,是匀变速直线运动;若加速度变化,则是变加速运动。
解:根据简谐运动的特征:a =﹣,可知物体的加速度大小和方向随位移的变化而变化,位移作周期性变化,加速度也作周期性变化,所以简谐运动是变加速运动。
简谐运动的描述一、简谐运动的概念和特征简谐运动是一种重要的周期性运动,它可以在自然界和人-made系统中观察到。
简谐运动的特征包括:1.周期性:简谐运动是一个重复的过程,物体会在规律的时间间隔内重复相同的运动。
2.能量守恒:简谐运动中物体的总能量保持不变,由动能和势能相互转化,但总能量始终保持恒定。
3.线性回复:简谐运动中,物体的回复力与它的偏离程度成正比,且方向相反,符合胡克定律。
4.最大回复力和最大速度的时刻不一致:简谐运动中,最大回复力与最大速度不会同时发生,它们的时刻相差1/4个周期。
二、简谐运动的数学描述简谐运动可以使用如下的数学描述:一维简谐运动的位移-时间关系:x=Acos(ωt+ϕ)其中, - A为振幅,表示物体偏离平衡位置的最大距离。
- ω为角频率,表示单位时间内的相位变化量。
- t为时间。
- φ为初相位,表示在t=0时刻的位相。
一维简谐运动的速度-时间关系:v=−ωAsin(ωt+ϕ)一维简谐运动的加速度-时间关系:a=−ω2Acos(ωt+ϕ)三、简谐运动的力学模型简谐运动可以通过一维弹簧振子来进行力学建模。
弹簧振子由一个弹簧和一个质量块组成。
当质量块受到外力扰动后,它会围绕平衡位置做简谐振动。
1.弹簧的自由长度为L,当质量块偏离平衡位置时,弹簧受到回复力,使得质量块回到平衡位置。
2.弹簧回复力与质量块的偏离程度成正比,符合胡克定律:F=−kx其中, - F为回复力的大小。
- k为弹簧的劲度系数,描述了弹簧的刚度和回复力的大小。
- x为质量块偏离平衡位置的距离。
四、简谐运动的频率和周期简谐运动的频率和周期和与力学模型中的角频率相关。
频率:简谐运动的频率表示单位时间内完成一个完整周期的次数,用hertz(Hz)作为单位,频率等于角频率除以2π。
周期:简谐运动的周期表示完成一个完整周期所需要的时间,用秒(s)作为单位,周期等于角频率的倒数。
五、简谐运动的实际应用简谐运动是自然界和人-made系统中普遍存在的一种运动形式,其应用十分广泛。
简谐运动的描述简谐运动的描述简谐运动是指一个物体在一个恒定的力场中做周期性的振动。
它是一种特殊的振动,具有周期性、稳定性和可预测性等特点。
简谐运动在自然界和工业生产中都有广泛应用,如弹簧振子、钟摆、电磁波等。
一、简谐运动的基本概念1.1 振幅振幅是指简谐运动中物体从平衡位置最大偏离距离。
通常用字母A表示,单位为米(m)。
1.2 周期周期是指简谐运动中物体完成一次完整振动所需要的时间。
通常用字母T表示,单位为秒(s)。
1.3 频率频率是指单位时间内完成的振动次数。
通常用字母f表示,单位为赫兹(Hz)。
1.4 相位相位是指在同一时刻内处于不同状态的两个物体之间的时间差。
相位差可以用角度来表示,通常用字母Φ表示。
二、简谐运动的数学描述2.1 速度与加速度公式对于简谐运动而言,速度和加速度分别可以用以下公式来计算:v = Aωcos(ωt + Φ)a = -Aω^2sin(ωt + Φ)其中,ω为角速度,可以用以下公式计算:ω = 2πf2.2 位移公式对于简谐运动而言,物体的位移可以用以下公式来计算:x = Acos(ωt + Φ)其中,A为振幅,Φ为相位差。
三、简谐运动的特点3.1 周期性简谐运动具有周期性,即物体在恒定的力场中做周期性的振动。
物体完成一次完整振动所需要的时间是固定的。
3.2 稳定性简谐运动具有稳定性,即物体在恒定的力场中做周期性的振动时,其运动状态是稳定并可预测的。
3.3 可预测性由于简谐运动具有稳定性和周期性,因此可以精确地预测物体在未来某一时刻所处的位置、速度和加速度等状态。
四、简谐运动的应用4.1 弹簧振子弹簧振子是一种常见的简谐振动系统。
它由一个质量和一个弹簧组成,在重力作用下进行周期性振动。
弹簧振子广泛应用于工业生产中的测量和控制系统中。
4.2 钟摆钟摆是一种通过重力驱动的简谐振动系统。
它由一个重物和一个支架组成,在重力作用下进行周期性振动。
钟摆广泛应用于时间测量、科学研究和导航等领域。
简谐运动的知识点总结下面是简谐运动的几个重要知识点总结:1. 简谐运动的定义简谐运动是指一个物体在恢复力的作用下,沿着直线或围绕固定轴线做周期性往复运动的一种特殊形式。
在简谐运动中,物体的加速度与位移呈线性关系,且恢复力与位移成正比。
2. 简谐运动的特征简谐运动有两个主要特征:周期性和振幅。
周期性指的是物体完成一次往复运动所需的时间,而振幅则是指往复运动的最大位移。
3. 简谐运动的数学描述简谐运动可以用正弦函数或余弦函数进行数学描述。
如果物体的位移沿着x轴方向变化,则其数学描述可以写为:x(t) = A * cos(ωt + φ),其中A是振幅,ω是角频率,t是时间,φ是初相位。
4. 弹簧振子的简谐运动弹簧振子是最典型的简谐运动系统之一。
当物体沿着弹簧的轴线上下振动时,其运动符合简谐运动的规律。
弹簧振子的周期T和角频率ω与弹簧的劲度系数k和质量m有密切关系。
5. 摆动的简谐运动摆动是另一个常见的简谐运动系统。
在重力的作用下,摆锤沿着一定的轨迹做周期性摆动,其运动也符合简谐运动的规律。
摆动的周期T和角频率ω与摆锤的长度l有密切关系。
6. 简谐运动的能量在简谐运动过程中,物体具有动能和势能,并且二者之和保持不变。
当物体位于最大位移处时,动能最大,势能最小;当位于最大位移的相反方向时,势能最大,动能最小。
7. 简谐运动的受力分析在简谐运动中,物体所受的恢复力与位移成正比,且与速度成反比。
这种受力形式被称为胡克定律,可以用F = -kx来描述,其中F是恢复力,k是弹簧或系统的劲度系数,x是位移。
8. 简谐运动的阻尼和受迫振动在实际情况下,简谐运动可能会受到阻尼和外力的影响,这时的简谐运动被称为阻尼振动和受迫振动。
阻尼振动是指系统中存在摩擦力或阻尼元件的情况,会使振动逐渐减弱直至停止;受迫振动是指系统受到外力驱动振动,外力的频率与系统的固有频率相近时,会出现共振现象。
9. 简谐运动的应用简谐运动在物理学和工程学中有广泛的应用,例如弹簧减震器、机械振动系统、音叉和声波振动等。
2 简谐运动的描述一、描述简谐运动的物理量1.振幅:振动物体离开平衡位置的最大距离.2.全振动(如图1所示)图1类似于O →B →O →C →O 的一个完整的振动过程. 3.周期和频率 (1)周期①定义:做简谐运动的物体完成一次全振动所需要的时间. ②单位:国际单位是秒(s). (2)频率①定义:单位时间内完成全振动的次数. ②单位:赫兹(Hz). (3)T 和f 的关系:T =1f .4.相位描述周期性运动在各个时刻所处的不同状态. 二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示振动物体相对于平衡位置的位移;t 表示时间.2.A 表示简谐运动的振幅.3.ω叫做简谐运动的“圆频率”,表示简谐运动的快慢,ω=2πT=2πf (与周期T 和频率f 的关系). 4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相位(或初相). 5.相位差若两个简谐运动的表达式为x 1=A 1sin(ωt +φ1),x 2=A 2sin(ωt +φ2),则相位差为 Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.一、描述简谐运动的物理量 1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,称为一次全振动. (2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同. ②时间特征:历时一个周期. ③路程特征:振幅的4倍. ④相位特征:增加2π. 2.对周期和频率的理解(1)周期(T )和频率(f )都是标量,反映了振动的快慢,T =1f ,即周期越大,频率越小,振动越慢.(2)一个振动系统的周期、频率由振动系统决定,与振幅无关. 3.对振幅的理解(1)振动物体离开平衡位置的最大距离. (2)振幅与位移的区别 ①振幅等于最大位移的数值.②对于一个给定的振动,振动物体的位移是时刻变化的,但振幅是不变的. ③位移是矢量,振幅是标量. (3)路程与振幅的关系①振动物体在一个周期内的路程为四个振幅. ②振动物体在半个周期内的路程为两个振幅. ③振动物体在14个周期内的路程不一定等于一个振幅.例1 如图2所示,将弹簧振子从平衡位置下拉一段距离Δx ,释放后振子在A 、B 间振动,且AB =20 cm ,振子由A 首次到B 的时间为0.1 s ,求:图2 (1)振子振动的振幅、周期和频率; (2)振子由A 到O 的时间;(3)振子在5 s 内通过的路程及偏离平衡位置的位移大小.例2 (多选)(2018·嘉兴市高二第一学期期末)如图3所示为一质点的振动图象,曲线满足正弦变化规律,则下列说法中正确的是( )图3 A.该振动为简谐振动 B.该振动的振幅为10 cmC.质点在前0.12 s 内通过的路程为20 cmD.0.04 s 末,质点的振动方向沿x 轴负方向二、简谐运动表达式的理解2.从表达式x =A sin (ωt +φ)体会简谐运动的周期性.当Δφ=(ωt 2+φ)-(ωt 1+φ)=2n π时,Δt =2n πω=nT ,振子位移相同,每经过周期T 完成一次全振动.3.从表达式x =A sin (ωt +φ)体会特殊点的值.当(ωt +φ)等于2n π+π2时,sin (ωt +φ)=1,即x =A ;当(ωt +φ)等于2n π+3π2时,sin (ωt +φ)=-1,即x =-A ;当(ωt +φ)等于n π时,sin (ωt +φ)=0,即x =0.例3 (多选)一弹簧振子A 的位移x 随时间t 变化的关系式为x =0.1sin 2.5πt ,位移x 的单位为m ,时间t 的单位为s.则( )A.弹簧振子的振幅为0.2 mB.弹簧振子的周期为1.25 sC.在t =0.2 s 时,振子的运动速度为零D.若另一弹簧振子B 的位移x 随时间t 变化的关系式为x =0.2sin (2.5πt +π4),则A 滞后B π4三、简谐运动的周期性和对称性 如图4所示图4(1)时间的对称①物体来回通过相同两点间的时间相等,即t DB =t BD .②物体经过关于平衡位置对称的等长的两线段的时间相等,图中t OB =t BO =t OA =t AO ,t OD =t DO =t OC =t CO . (2)速度的对称①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D )时,速度大小相等,方向可能相同,也可能相反. (3)位移的对称①物体经过同一点(如C 点)时,位移相同.②物体经过关于O 点对称的两点(如C 与D )时,位移大小相等、方向相反.利用简谐运动图像理解简谐运动的对称性(1)相隔Δt =⎝ ⎛⎭⎪⎫n +12T (n =0,1,2,…)的两个时刻,弹簧振子的位置关于平衡位置对称,位移等大反向,速度也等大反向。
第2节简谐运动的描述一、描述简谐运动的物理量1.弹簧振子做简谐运动,若从平衡位置O开始计时,经过4s振子第一次经过P点,又经过了1s,振子第二次经过P点,则该简谐运动的周期为()A.5s B.8s C.14s D.18s【答案】D【详解】如图,假设弹簧振子在水平方向BC之间振动若振子开始先向右振动,振子的振动周期为14(4)s18s2T=⨯+=若振子开始先向左振动,设振子的振动周期为T',则1()4s242T T''+-=解得6sT'=故选D。
2.如图所示,弹簧振子在B、C间振动,O为平衡位置,BO=OC=5cm。
若振子从B到C的运动时间是1s,则下列说法中正确的是()A.振子从B经O到C完成一次全振动B.振动周期是1s,振幅是10cmC.经过两次全振动,振子通过的路程是20cmD.从B开始经过3s,振子通过的路程是30cm【答案】D【详解】AB .振子从B 经O 到C 只完成半次全振动,再回到B 才算完成一次全振动,完成一次全振动的时间为一个周期,故T =2s ,AB 错误;C .经过一次全振动,振子通过的路程是4倍振幅,故经过两次全振动,振子通过的路程是40cm ,C 错误;D .从B 开始经过3s ,振子通过的路程是30cm ,D 正确。
故选D 。
二、简谐运动表达式3.如图所示,水平弹簧振子沿x 轴在M 、N 间做简谐运动,坐标原点O 为振子的平衡位置,其振动方程为5sin(10)cm 2x t ππ=+。
下列说法不正确的是( )A .MN 间距离为5 cmB .振子的运动周期是0.2sC . 0=t 时,振子位于N 点D .0.05s t =时,振子具有最大速度【答案】A【详解】A .MN 间距离为210 cm A =,A 错误;B .由5sin(10)cm 2x t ππ=+可知10rad/s ωπ=可知振子的运动周期是20.2s πω==T ,B 正确; C .由5sin(10)cm 2x t ππ=+可知0=t 时 5 cm x =即振子位于N 点,C 正确;D .由5sin(10)cm 2x t ππ=+可知t=0.05 s 时0x =此时振子在O 点,振子速度最大,D 正确。