2 简谐运动的描述
- 格式:docx
- 大小:91.92 KB
- 文档页数:1
第二节简谐运动的描述1、振幅(A):振动物体离开平衡位置的最大距离。
意义:表征振动强弱的物理量,振幅越大,振动能量越大;是标量,大小不变(简振)。
单位:米(m)2、频率(f):一秒钟内完成全振动的次数。
单位:赫兹(Hz)周期(T):完成一次全振动所经历的时间。
单位:秒(S)意义:表征振动快慢的物理量关系:Tf=1 T越大,f越小,振动越慢。
说明:物体的振动频率是由振动物体本身的性质决定的,与振幅的大小无关,所以又叫固有频率。
振动的周期叫做固有周期。
练习:1.如图9—2—1所示,弹簧振子以O为平衡位置在BC 间振动,则A. 从B→O→C→O→B为一次全振动B. 从O→B→O→C→B为一次全振动C.从C→O→B→O→C为一次全振动D. 振幅大小是OB2.上题中振子,若BC=5cm,则A. 振幅是5 cm B.振幅是2.5 cmC.经3个全振动,振子通过的路程是30cmD. 不论从哪个位置开始振动,经两个全振动,振子偏离平衡位置的位移都是零3.第1题中,若振子由O→B所需最短时间是0.1 s,则A.振动周期是0.2 s B.振动周期是0.4 sC. 振动频率是0.4 HzD. 振动频率是2.5 Hz4.关于简谐运动的下述各物理量,说法正确的是A.振幅是由平衡位置指向最大位移处的一个矢量B. 周期和频率的乘积为一常量C.振幅越大,周期越长D.振幅越小,频率越大5.一弹簧振子分别拉离平衡位置5 cm和1 cm处放手,使它们都做简谐运动,则前后两次振幅之比为__________,周期之比为___________,回复力的最大值之比为____________.6.甲、乙两个做简谐运动的弹簧振子,在甲振动20次时间里,乙振动了40次,则甲、乙振动周期之比为__________;若甲的振幅加倍而乙的不变,则甲、乙振动频率之比为__________.7.质点做简谐运动,从质点经过某一位置时开始记时,下列说法正确的是A.当质点再次经过此位置时,经过的时间为一个周期B.当质点的速度再次与零时刻的速度相同时,经过的时间为一个周期C.当质点的加速度再次与零时刻的加速度相同时,经过的时间为一个周期D.当质点经过的路程为振幅的4倍时,经过的时间为一个周期8.一质点做简谐运动,振幅是4 cm、频率是2.5 Hz,该质点从平衡位置起向正方向运动,经2.5 s质点的位移和路程分别是(选初始运动方向为正方向)A.4 cm,24 cm B.-4 cm,100 cmC.0,100 cm D.4 cm,100 cm9.一质点在O点附近做简谐运动,它离开O向M点运动,3 s末第一次到达M点,又经过2 s第二次到达M点,再经过_________s它将第三次到达M点.若该质点由O出发在8 s内走过8cm的路程,该质点的振幅为_________㎝.10.弹簧振子经过a、b两点时速度大小相等,方向相反,所用最短时间为0.2 s,则这个振子周期为_________.11.做简谐运动的弹簧振子,质量为m,最大速率为v 从某时刻算起:A.半个周期内,弹力做的功一定为零B.半个周期内,弹力做的功可能是零到212m v之间的某一值C. 1/4周期内,弹力做的功一定为212m vD.1/4周期内,弹力做的功可能是零到212m v之间的某一值图9-2-1。
2.简谐运动的描述学习目标:1.[物理观念]理解振幅、周期和频率,了解相位. 2.[科学思维]能用简谐运动的表达式描述简谐运动.☆阅读本节教材,回答第35页“问题”并梳理必要的知识点.教材第35页问题提示:根据简谐运动的周期性、振动快慢的特点,物理学引入了振幅、周期和频率描绘简谐运动.一、描述简谐运动的物理量1.振幅(1)定义:振动物体离开平衡位置的最大距离,叫作振动的振幅.用A表示,国际单位为米(m).(2)物理含义:振幅是描述振动范围的物理量;振幅的大小反映了振动的强弱和振动系统能量的大小.2.周期(T)和频率(f)内容周期频率定义做简谐运动的物体完成一次全振动所需要的时间物体完成全振动的次数与所用时间之比单位秒(s)赫兹(Hz)物理含义都是表示振动快慢的物理量联系f=1T注意:不管以哪个位置作为研究起点,做简谐运动的物体完成一次全振动的时间总是相同的.3.相位:在物理学中,周期性运动在各个时刻所处的不同状态用不同的相位来描述. 二、简谐运动的表达式 1.表达式:简谐运动的表达式可以写成 x =A sin ()ωt +φ或x =A sin ⎝ ⎛⎭⎪⎫2πT t +φ 2.表达式中各量的意义(1)“A ”表示简谐运动的“振幅”.(2)ω是一个与频率成正比的物理量,叫简谐运动的圆频率.(3)“T ”表示简谐运动的周期,“f ”表示简谐运动的频率,它们之间的关系为T =1f .(4)“2πT t +φ”或“2πft +φ”表示简谐运动的相位.(5)“φ”表示简谐运动的初相位,简称初相.说明:1.相位ωt +φ是随时间变化的一个变量.2.相位每增加2π就意味着完成了一次全振动.1.思考判断(正确的打“√”,错误的打“×”)(1)振幅就是振子的最大位移. (×)(2)从任一个位置出发又回到这个位置所用的最短时间就是一个周期.(×)(3)振动物体的周期越大,表示振动得越快. (×)(4)简谐运动的位移表达式与计时时刻物体所在位置无关.(×) 2.(多选)如图所示,弹簧振子以O 点为平衡位置,在B 、C 间振动,则( )A .从B →O →C →O →B 为一次全振动B .从O →B →O →C →B 为一次全振动C .从C →O →B →O →C 为一次全振动D .B 、C 两点关于O 点对称ACD [O 点为平衡位置,B 、C 为两侧最远点,则从B 起经O 、C 、O 、B 的路程为振幅的4倍,即A 正确;若从O 起经B 、O 、C 、B 的路程为振幅的5倍,超过一次全振动,即B 错误;若从C 起经O 、B 、O 、C 的路程为振幅的4倍,即C 正确;因弹簧振子的系统摩擦不考虑,所以它的振幅一定,故B 、C 两点关于O 点对称,D 正确.]3.(多选)物体A 做简谐运动的振动位移x A =3sin ⎝ ⎛⎭⎪⎫100t +π2 m ,物体B 做简谐运动的振动位移x B =5sin ⎝ ⎛⎭⎪⎫100t +π6 m .比较A 、B 的运动( ) A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A 、B 周期相等,为100 sC .A 振动的圆频率ωA 等于B 振动的圆频率ωBD .A 的相位始终超前B 的相位π3CD [振幅是标量,A 、B 的振幅分别是3 m 、5 m ,A 错;A 、B 的圆频率ω=100 rad/s ,周期T =2πω=2π100s =6.28×10-2 s ,B 错,C 对;Δφ=φAO -φBO =π3为定值,D 对.]描述简谐运动的物理量提示:(1)振子的振幅在数值上与振子的最大位移相等.(2)10 cm.1.振幅与位移、路程、周期的关系(1)振幅与位移:振动中的位移是矢量,振幅是标量.在数值上,振幅与振动物体的最大位移相等,在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化.(2)振幅与路程:振动中的路程是标量,是随时间不断增大的.其中常用的定量关系是:一个周期内的路程为4倍振幅,半个周期内的路程为2倍振幅.(3)振幅与周期:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关.2.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫作一次全振动.(2)正确理解全振动的概念,还应注意把握全振动的四个特征.①物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同.②时间特征:历时一个周期.③路程特征:振幅的4倍.④相位特征:增加2π.【例1】一个做简谐运动的质点,它的振幅是4 cm,频率是2.5 Hz,该质点从平衡位置开始经过2.5 s后,位移的大小和经过的路程为() A.4 cm10 cm B.4 cm100 cmC.024 cm D.0100 cm思路点拨:根据质点在一个周期内通过路程为4A,求路程.B[质点的振动周期T=1f=0.4 s,故时间t=2.50.4T=614T,所以2.5 s末质点在最大位移处,位移大小为4 cm,质点通过的路程为4×4×614cm=100 cm,选项B正确.]振幅与路程的关系振动中的路程是标量,是随时间不断增大的.一个周期内的路程为4倍的振幅,半个周期内的路程为2倍的振幅.(1)若从特殊位置开始计时,如平衡位置、最大位移处,14周期内的路程等于振幅.(2)若从一般位置开始计时,14周期内的路程与振幅之间没有确定关系,路程可能大于、等于或小于振幅.[跟进训练]1.弹簧振子以O 点为平衡位置在B 、C 两点间做简谐运动,BC 相距20 cm ,某时刻振子处于B 点,经过0.5 s ,振子首次到达C 点.求:(1)振子的振幅;(2)振子的周期和频率;(3)振子在5 s 内通过的路程大小.[解析] (1)设振幅为A ,则有2A =BC =20 cm ,所以A =10 cm.(2)从B 点首次到C 点的时间为周期的一半,因此T =2t =1 s ;再根据周期和频率的关系可得f =1T =1 Hz.(3)振子一个周期通过的路程为4A =40 cm ,则5 s 内通过的路程为s =t T ·4A=5×40 cm =200 cm.[答案] (1)10 cm (2)1 s 1 Hz (3)200 cm简谐运动的表达式式中x 表示振动质点相对于平衡位置的位移;t 表示振动的时间;A 表示振动质点偏离平衡位置的最大距离,即振幅.2.各量的物理含义(1)圆频率:表示简谐运动物体振动的快慢,与周期T 及频率f 的关系:ω=2πT =2πf .(2)φ表示t=0时简谐运动质点所处的状态,称为初相位或初相.ωt+φ表示做简谐运动的质点在t时刻处在一个运动周期中的哪个状态,所以表示简谐运动的相位.3.做简谐运动的物体运动过程中的对称性(1)瞬时量的对称性:各物理量关于平衡位置对称.以水平弹簧振子为例,振子通过关于平衡位置对称的两点,位移、速度、加速度大小相等,动能、势能、机械能相等.(2)过程量的对称性:振动质点来回通过相同的两点间的时间相等,如t B C =t C B;质点经过关于平衡位置对称的等长的两线段的时间相等,如t B C=t B′C′,如图所示.4.做简谐运动的物体运动过程中的周期性简谐运动是一种周而复始的周期性的运动,按其周期性可做如下判断:(1)若t2-t1=nT,则t1、t2两时刻振动物体在同一位置,运动情况相同.(2)若t2-t1=nT+12T,则t1、t2两时刻,描述运动的物理量(x、F、a、v)均大小相等,方向相反.(3)若t2-t1=nT+14T或t2-t1=nT+34T,则当t1时刻物体到达最大位移处时,t2时刻物体到达平衡位置;当t1时刻物体在平衡位置时,t2时刻物体到达最大位移处;若t1时刻物体在其他位置,t2时刻物体到达何处就要视具体情况而定.【例2】一物体沿x轴做简谐运动,振幅为8 cm,频率为0.5 Hz,在t=0时,位移是4 cm,且向x轴负方向运动,试写出用正弦函数表示的振动方程,并画出相应的振动图像.思路点拨:简谐运动振动方程的一般表达式x=A sin(ωt+φ),读出振幅A,由ω=2πf求出ω,将在t=0时,位移是4 cm代入即可求解振动方程,便能画出振动图像.[解析]简谐运动的表达式为x=A sin(ωt+φ),根据题目所给条件得A=8 cm,ω=2πf=π,所以x=8sin(πt+φ) cm,将t=0,x0=4 cm代入得4=8sin φ,解得初相φ=π6或φ=56π,因为t =0时,速度方向沿x 轴负方向,即位移在减小,所以取φ=56π,所求的振动方程为x =8sin(πt +56π) cm ,画对应的振动图像如图所示.[答案] 见解析用简谐运动表达式解答振动问题的方法(1)明确表达式中各物理量的意义,可直接读出振幅、圆频率、初相.(2)ω=2πT =2πf 是解题时常涉及到的表达式.(3)解题时画出其振动图像,会使解答过程简捷、明了.[跟进训练]2.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm ,周期为3.0 s .当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm 时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间是________.[解析] 由于振幅A 为20 cm ,振动方程为y =A sin ωt (平衡位置计时,ω=2πT ),由于高度差不超过10 cm ,游客能舒服地登船,代入数据可知,在一个振动周期内,临界时刻为t 1=T 12,t 2=5T 12,所以在一个周期内舒服登船的时间为Δt =t 2-t 1=T 3=1.0 s. [答案] 1.0 s1.物理观念:描述简谐运动的物理量:振幅、周期和初相位.2.科学思维:简谐运动的表达式.3.科学探究:探究弹簧振子运动的特点.1.下列说法正确的是()A.物体完成一次全振动,通过的位移是4个振幅B.物体在14个周期内,通过的路程是1个振幅C.物体在1个周期内,通过的路程是4个振幅D.物体在34个周期内,通过的路程是3个振幅C[在一次全振动中,物体回到了原来的位置,故通过的位移一定为零,A错误;物体在14个周期内,通过的路程不一定是1个振幅,与物体的初始位置有关,只有当物体的初始位置在平衡位置或最大位移处时,物体在14个周期内,通过的路程才等于1个振幅,B错误;根据对称性可知,物体在1个周期内,通过的路程是4个振幅,C正确;物体在34个周期内,通过的路程不一定是3个振幅,与物体的初始位置有关,只有当物体的初始位置在平衡位置或最大位移处时,物体在34个周期内,通过的路程才是3个振幅,D错误.]2.如图所示,m为在光滑水平面上的弹簧振子,弹簧形变的最大限度为20 cm,图中P位置是弹簧振子处于自然伸长状态的位置,若将振子m向右拉动5 cm 后由静止释放,经过0.5 s后振子m第一次回到P位置,关于该弹簧振子,下列说法正确的是()A.该弹簧振子的振动频率为1 HzB.在P位置给振子m任意一个向左或向右的初速度,只要最大位移不超过20 cm,总是经过0.5 s速度就降为0C.若将振子m向左拉动2 cm后由静止释放,振子m连续两次经过P位置的时间间隔是2 sD.若将振子m向右拉动10 cm后由静止释放,经过1 s振子m第一次回到P位置B[将振子m向右拉动5 cm后由静止释放,经过0.5 s后振子m第一次回到P位置经历T4,所以T=4×0.5 s=2 s,振动的频率f=1T=12Hz,A错误;振动的周期与振幅的大小无关,在P位置给振子m任意一个向左或向右的初速度,只要最大位移不超过20 cm,总是经过14T=0.5 s到达最大位移处,速度降为0,B正确;振动的周期与振幅的大小无关,振子m连续两次经过P位置的时间间隔是半个周期,即1 s,C错误;振动的周期与振幅的大小无关,所以若将振子m向右拉动10 cm后由静止释放,经过0.5 s振子m第一次回到P位置,D错误.] 3.一个质点在水平方向上做简谐运动的位移随时间变化的关系是x=5sin 5πt(cm),则下列判断正确的是()A.该简谐运动的周期是0.2 sB.前1 s内质点运动的路程是100 cmC.0.4 s到0.5 s内质点的速度在逐渐减小D.t=0.6 s时质点的动能为0C[由简谐运动的位移随时间变化的关系式x=5sin 5πt(cm),可知圆频率ω=5π,则周期T=2πω=2π5πs=0.4 s,A错误;1个周期内运动的路程为4A=20 cm,所以前1 s内质点运动的路程是s=tT·4A=2.5×20 cm=50 cm,B错误;0.4 s到0.5 s质点由平衡位置向最大位移处运动,速度减小,C正确;t=0.6 s时,质点经过平衡位置,动能最大,D错误.]4.(多选)一个质点做简谐运动的图像如图所示,下列说法正确的是()A.质点的振动频率为4 HzB.在0~10 s内质点经过的路程是20 cmC.在第5 s末,质点速度为零,加速度最大D.在t=1.5 s和t=4.5 s两时刻质点位移大小相等BCD[由题图读出周期为T=4 s,则频率为f=1T=0.25 Hz,A错误;质点在一个周期内通过的路程是4个振幅,则在0~10 s内质点经过的路程是s=20 cm,B正确;在第5 s末,质点位于最大位移处,速度为零,加速度最大,C正确;由题图可以看出,在t=1.5 s和t=4.5 s两时刻质点位移大小相等,D正确.] 5.[思维拓展]情景:在心电图仪、地震仪等仪器工作过程中,要进行振动记录,如图甲所示是一个常用的记录方法,在弹簧振子的小球上安装一支记录用笔P,在下面放一条白纸带,当小球振动时,匀速拉动纸带(纸带运动方向与振子振动方向垂直),笔就在纸带上画出一条曲线,如图乙所示.问题:(1)若匀速拉动纸带的速度为1 m/s,则由图中数据算出振子的振动周期为多少?(2)试着作出P的振动图像.(3)若拉动纸带做匀加速直线运动,且振子振动周期与原来相同.由图丙中数据求纸带的加速度.提示:(1)由图乙可知,当纸带匀速前进20 cm时,弹簧振子恰好完成一次全振动,由v=xt,可得t=xv=0.21s=0.2 s,所以周期T=0.2 s.(2)由图乙可以看出P的振幅为2 cm,振动图像如图所示.(3)当纸带做匀加速直线运动时,振子振动周期仍为0.2 s,由丙图可知,两个相邻0.2 s时间内,纸带运动的距离分别为0.21 m、0.25 m,由Δx=aT2,得加速度a=0.25-0.210.22m/s2=1.0 m/s2.[答案](1)0.2 s(2)见解析图(3)1.0 m/s21/10。
2.2 简谐运动的描述问题引入:上一节课已经知道做简谐运动的物体的位移x与运动时间t之间满足正(余)弦函数关系(如图所示),尝试写出位移的一般函数表达式,并分析简谐运动的特点。
解析:由数学知识可知,位移x的一般函数表达式可写为:x =Asin(ωt+φ),仔细观察右图可知,A表示的是弹簧振子偏离平衡位置的最大距离,把它叫做振幅,振动物体运动的范围是振幅的两倍,t是振动的时间,是t = 0时振子所处的状态,ω与振子振动快慢有关一、描述简谐运动的物理量:1.振幅(A):(1)定义:振动物体离开平衡位置的最大距离,用A表示.振动物体运动的范围是振幅的两倍。
(2)物理意义:振幅是反映振动强弱的物理量,振幅越大表示振动越强.(3)振幅是标量:它没有负值,也无方向,它等于振子最大位移的大小,却不是最大位移.2、周期(T)和频率(f)(1)全振动:一个完整的振动过程.如图,如果从振子向右通过O点的时刻开始计时,它将运动到M,然后左回到O,又继续向左运动到达M′,之后又向右回到O,这样一个完整的振动过程称为一次全振动.O→M→O→M′→O ,若从图中P0点向右运动开始计时,经历的一次全振动应为P0→M→P0→O→M′→O→P0(2)判断做简谐运动的物体在某一阶段的振动是否为一次全振动的两种方法:①、如果物体的位移和速度都回到原值(大小、方向与初始状态完全相同),即物体完成了一次全振动.②、看物体在这段时间内通过的路程是否等于振幅的四倍.(3)周期(T):做简谐运动的物体完成一次全振动所需要的时间.(T =2πmk,m为振动物体的质量,k为回复系数)(4)频率(f):单位时间内完成全振动的次数.(5)T和f的关系:T =1 f3、相位:用来描述周期性运动在各个时刻所处的不同状态.二、简谐运动的表达式:1、表达式:2、圆频率(ω):表示简谐运动的快慢. ω= 2πT = 2πf3、相位(ωt +φ0):代表了简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,所以代表简谐运动的相位.4、初相位(φ0):表示t =0时,简谐运动的质点所处的状态,称为初相位或初相.5、相位差:相位差是指两个相位之差,在实际应用中经常用到的是两个具有相同频率的简谐运动的相位差,它反映出两个简谐运动的步调差异.(1)设两频率相同.....的简谐运动的振动方程分别为x 1=A 1sin(ωt +φ1),x 2=A 2sin(ωt +φ2), 它们的相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1,可见,其相位差恰好等于它们的初相 之差,因为初相是确定的,所以频率相同的两个简谐运动有确定的相位差.(2)在比较相位或计算相位差时,一定要用同种函数来表示振动方程.(3)做简谐运动的A 、B 振子相位差的取值范围:-π ≤ Δφ (=φB -φA ) ≤ π;相位每增加2π就意味着完成了一次全振动.若Δφ > 0,则称B 的相位比A 的相位超前Δφ或A 的相位比B 的相位落后Δφ;若Δφ <0,则称B 的相位比A 的相位落后Δφ或A 的相位比B 的相位超前Δφ.1、 同相:相位差为零,一般地为∆ϕ = 2n π (n=0,1,2,……)2、 反相:相位差为π ,一般地为∆ϕ = (2n+1)π (n=0,1,2,……)【例1】.(多选)物体A 做简谐运动的振动位移x A =3sin ⎝⎛⎭⎫100t +π2 m ,物体B 做简谐运动的振动位移x B =5sin ⎝⎛⎭⎫100t +π6 m .比较A 、B 的运动( CD ) A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A 、B 周期相等为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 的相位始终超前B 的相位π3【例2】.如图所示,将弹簧振子从平衡位置拉下一段距离Δx ,释放后振子在A 、B 间振动,且AB =20 cm ,振子首次由A 到B 的时间为0.1 s ,求:(1)振子振动的振幅、周期和频率.(2)振子由A 到O 的时间.(3)振子在5 s 内通过的路程及位移大小.解析:(1)由题图可知,振子振动的振幅为10 cm ,t = 0.1 s = T 2 , 所以T = 0.2 s.由f = 1T得f = 5 Hz. (2)根据简谐运动的对称性可知,振子由A 到O 的时间与振子由O 到B 的时间相等, 均为0.05 s.(3)设弹簧振子的振幅为A ,则A =10 cm.振子在1个周期内通过的路程为4 A ,故 在t = 5 s = 25T 内通过的路程s = 40×25 cm = 1000 cm.5 s 内振子振动了25个周期,5s 末振子仍处在A 点,所以振子偏离平衡位置的位移大小10 cm.2.2 简谐运动的描述(同步练习)1.如图所示是一质点做简谐运动的振动图象,下列说法正确的是( )A .t 1至t 2时刻质点完成一次全振动B .t 1至t 3时刻质点完成一次全振动C .t 1至t 4时刻质点完成一次全振动D .t 2至t 4时刻质点完成一次全振动2.一个质点做简谐运动,质点每次经过同一位置时,下列物理量一定相同的是( )A .速度B .加速度C .动能D .位移3.一质点做简谐运动的位移—时间图线如图所示.关于此质点的振动,下列说法中正确的是( )A .质点做简谐运动的表达式为x =10sin(πt ) cmB .在0.5~1.0 s 时间内,质点向x 轴正向运动C .在1.0~1.5 s 时间内,质点的动能在增大D .在1.0~1.5 s 时间内,质点的加速度在增大4.一个在水平方向做简谐运动的物体,它的振幅是4 cm ,频率是2.5 Hz.物体经过平衡位置开始计时,再经过21 s ,此时它相对平衡位置的位移大小为( )A .0B .4 cmC .840 cmD .210 cm5.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( )A .x =8×10-3sin(4πt +π2)m B .x =8×10-3sin(4πt -π2)m C .x =8×10-1sin(πt +32π)m D .x =8×10-1sin(4πt +π2)m6.如图所示是一做简谐运动的物体的振动图象,下列说法正确的是( )A .振动周期是2×10-2sB .第2个10-2 s 内物体的位移是-10 cmC .物体的振动频率为25 HzD .物体的振幅是10 cm7.一个简谐运动的振动方程为x =5cos(2πt +π2) cm ,这个振动的振幅是 cm ;频率是 Hz ;在t =0.1 s 时的相位是 ;在1 s 的时间内振子通过的路程是 cm.8.如图所示为A 、B 两个简谐运动的位移—时间图象.试根据图象写出:(1)A 的振幅是______cm ,周期是______ s ;B 的振幅是______ cm ,周期是______ s.(2)试写出这两个简谐运动的位移随时间变化的关系式.(3)在时间t =0.05 s 时两质点的位移分别是多少?9.一物体沿x 轴做简谐运动,振幅为8 cm ,频率为0.5 Hz ,在t =0时,位移是4 cm ,且向x 轴负方向运动.(1)试写出用正弦函数表示的振动方程.(2)10 s 内通过的路程是多少?1、C2、BCD3、D4、A 解析:振动周期T =1f =0.4 s ,所以t T =210.4=5212,根据运动的周期性可知物体经过平衡位置,所以位移为0.5、A 解析:ω=2πT=4π rad/s ,当t =0时,具有负方向的最大加速度,则x =A ,所以初相φ=π2,表达式为x =8×10-3sin(4πt +π2)m ,A 正确. 6、BCD 解析:振动周期是完成一次全振动所用的时间,在图象上是两相邻极大值间的距离,所以周期是4×10-2s.又f =1T,所以f =25 Hz ,则A 项错误,C 项正确;正、负极大值表示物体的振幅,所以振幅A =10 cm ,则D 项正确;第2个10-2s 的初位置是10 cm ,末位置是0,根据位移的概念有x =-10 cm ,则B 项正确.7、解析:振幅可直接由表达式读出,A =5 cm ,圆频率ω=2π,由ω=2πf 知其频率f =1 Hz.t =0.1 s 时,2πt +π2=0.2π+π2=710π,即相位为710π,因为f =1 Hz ,则T =1f=1 s ,故1 s 内通过的路程s =4A =4×5 cm=20 cm. 8、解析:(1)由题图知:A 的振幅是0.5 cm ,周期是0.4 s ;B 的振幅是0.2 cm ,周期是0.8 s.(2)由题图知:A 中振动的质点从平衡位置沿正方向已振动了12周期,故φ=π,由T =0.4 s ,得ω=2πT=5π rad/s,则A 简谐运动的表达式为x A =0.5sin(5πt +π)cm.B 中振动的质点从平衡位置沿正方向已振动了14周期,故φ=π2,由T =0.8 s ,得ω=2πT=2.5π rad/s,则B 简谐运动的表达式为x B =0.2 sin(2.5πt +π2) cm. (3)将t =0.05 s 分别代入两个表达式中得:x A =0.5sin(5π×0.05+π)cm=-0.5×22 cm =-24 cm ,x B =0.2sin(2.5π×0.05+π2)cm =0.2sin 58π cm. 9、答案:(1)x =0.08sin(πt +56π)m (2)160 cm 解析:(1)简谐运动振动方程的一般表达式为x =A sin(ωt +φ).根据题给条件,有:A =0.08 m ,ω=2πf =πrad/s.所以x =0.08sin(πt +φ)m .将t =0,x =0.04 m 代入得0.04m =0.08sin φ m ,解得初相位φ=π6或φ=56π,因为t =0时,速度方向沿x 轴负方向,即位移在减小,所以取φ=56π.故所求的振动方程为x =0.08sin(πt +56π)m. (2)周期T =1f=2 s ,所以t =5T ,因一个周期内通过的路程是4A ,则10 s 内通过的路程s =5×4A =20×8 cm=160 cm.。
引言概述:简谐运动是物理学中的一个重要概念,它在生活中随处可见。
本文将对简谐运动的知识进行总结,以帮助读者全面理解和掌握简谐运动的相关概念和特性。
正文内容:一、简谐运动的定义与描述1.简谐运动的定义:简谐运动是指物体在一个恢复力作用下沿直线或者围绕固定轴线进行的运动,其加速度与位移成正比且反向相同。
2.简谐运动的描述:简谐运动可以用位移、速度、加速度等物理量对其进行描述,其中位移随时间的变化呈正弦函数。
二、简谐运动的特性1.周期性:简谐运动具有周期性,即物体在一次完整运动中所经历的时间是一定的。
2.频率:简谐运动的频率是指单位时间内完成的运动周期数,其与周期有倒数关系。
3.振幅:简谐运动的振幅是指物体在运动过程中离开平衡位置的最大位移。
4.相位:简谐运动的相位是指物体在简谐运动中的位置关系,可以通过相位角来描述。
5.能量守恒:简谐运动中,机械能守恒,包括动能和势能的转化。
三、简谐振动的数学表达1.位移方程:简谐运动可以通过位移方程进行数学表达,一般形式为x(t)=Asin(ωt+φ),其中A为振幅,ω为角频率,φ为初相位。
2.速度和加速度方程:简谐运动的速度和加速度可以通过对位移方程分别进行一次和两次时间导数得到。
四、简谐振动的应用1.机械振动:简谐振动在机械工程中有广泛应用,如弹簧振子、钟摆等。
2.电磁振动:简谐振动在电磁学中的应用包括交流电路中的振荡器、天线振动等。
3.光学振动:简谐振动在光学中的应用包括光的偏振、干涉等现象。
4.生物振动:简谐振动在生物学中有许多应用,如心脏的收缩与舒张、呼吸等。
5.音乐演奏:音乐演奏中的乐器振动可以用简谐振动进行描述,如弦乐器、风笛等。
五、简谐振动的干扰和共振1.干扰:两个简谐振动相互作用可以产生干扰,如合成振动和干涉现象。
2.共振:当外界周期性力与物体的固有振动频率相同或接近时,会发生共振现象,产生巨大振幅。
总结:通过对简谐运动的定义与描述、特性、数学表达、应用以及干扰和共振的介绍,我们可以更全面地理解和掌握简谐运动的相关知识。
11.2 简谐运动的描述
( ) ▲1.若振子由平衡位置到最大位移处所需最短时间是0.1s,则
A.振动周期是0.2s B.振动周期是0.4s C.振动频率是0.4Hz D.振动频率是2.5Hz
( ) ▲2. 关于简谐运动,以下说法中错误的是
A.质点从平衡位置起,第1次到达最大位移处所需时间为T/4
B.质点走过一个振幅那么长的路程用的时间总是T/4
C.质点在T/2时间内走过的路程恒等于一个振幅的长度
D.质点在T/4时间内走过的路程可以大于、小于或等于一个振幅的长度
( )3.如图所示,弹簧振子在BC间振动,O为平衡位置,BO=OC=5cm。若
振子从B到C的运动时间是1s,则下列说法中正确的是
A.振子从B经O到C完成一次全振动
B.振动周期是ls,振幅是10cm
C.经过两次全振动,振子通过的路程是20cm
D.从B开始经过3s,振子通过的路程是30cm
( ) ▲4.如果表中给出的是做简谐运动的物体
的位移x或速度v与时间的对应关系.T是振动周期,
则下列说法中正确的是
A.若甲表示位移x.则丙表示相应的速度v
B.若丁表示位移x,则甲表示相应的速度v
C.若丙表示位移x,则甲表示相应的速度v
D.若乙表示位移x.则丙表示相应的速度v
( ) ▲5.下列关于简谐运动振幅、周期和频率的说法中正确的是
A.振幅是矢量,方向从平衡位置指向最大位移处
B.周期和频率的乘积是一个常数
C.振幅增加,周期必然增加而频率减小
D.做简谐运动的物体,其频率固定,与振幅无关
( ) ▲6.如图所示是某弹簧振子的振动图象,由此图象判断下列说法中正确的是
A.弹簧振子振动的振幅是3cm
B.弹簧振子振动的周期是8s
C.4s末振子的加速度为0,速度沿x轴负方向
D.第14s末振子的加速度为正,速度最大
( )7.如图所示,放在光滑水平面上的弹簧振子,振子质量为m,振子以O为平衡位置,在B
和C之间振动,设振子经平衡位置时的速度为v,则它在由O→B→O→C的整个运动过程中,弹簧
弹力对振子所做功的大小为
A.2mv2。 B.21mv2 C.3mv2。 D.23mv2
( )8.某同学看到一只鸟落在树枝上的P处,树枝在10s内上下振动了6次,鸟飞走后,他把
50g的砝码挂在P处,发现树枝在10s内上下振动了12次。将50g的砝
码换成500g后,他发现树枝在15s内上下振动了6次。试估计鸟的质量
最接近
A.50g B.200g C.500g D.550g
时间 状态 0
4T 2
T
4
3T
T
甲 零 正向 最大 零 负向 最大 零
乙 零 负向 最大 零 正向 最大 零
丙 正向 最大 零 负向 最大 零
正向
最大
丁 负向 最大 零 正向 最大 零
负向
最大