3.3相似三角形的性质和判定_试题.doc
- 格式:doc
- 大小:181.50 KB
- 文档页数:4
相似三角形的定义、判定及性质(习题)➢例题示范例1:如图,在正方形ABCD 中,E 为边AD 的中点,点 F 在边CD 上,且CF=3FD,△ABE 与△DEF 相似吗?为什么?解:△ABE 与△DEF 相似.理由如下:在正方形ABCD 中,∠A=∠D=90°,AB=AD=CD设AB=AD=CD=4a∵E 为边AD 的中点,CF=3FD∴AE=DE=2a,DF=a∴ AB=4a= 2 ,AE =2a = 2DE 2a∴ AB=AEDF aDE DF又∵∠A=∠D∴△ABE∽△DEF➢巩固练习1.在下面的两组图形中,各有一对相似三角形,则x= ,y= ,m= ,n= .2.如图,△ADE∽△ABC,AD=BC,BD=4,DE=9,则AD= ,AE= .EC3.如图,在△ABC 中,AC=8,BC=10,AB=12,D,E 分别是△ABC 的边AB,AC 上的动点,且始终满足△ABC∽△AED.当AE=AC 时,BD= ;当AE=BD 时,AE= ,DE=;BC在D,E 移动的变化过程中,AD:DE:AE= .4.如图,在△ABC 中,点P 为边AB 上一点,则下列四个条件:①∠ACP=∠B;②∠APC=∠ACB;③AC2 =AP ⋅AB ;④ AB ⋅CP =AP ⋅CB .其中能判定△ABC∽△ACP 相似的是.第4 题图第5 题图5.如图,在正三角形ABC 中,D,E 分别在AC,AB 上,且AD=1,AC 3AE=BE,则有()A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD6.在如图4×4 的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是()A B C D7.如图,在梯形ABCD 中,AD∥BC,对角线AC,BD 交于点O,OD=1,若OA=1,OB =9,则OD= ,AD=.OC 2 2 BC8.如图,∠APB=120°,点M,N 在线段AB 上,△PMN 是等边三角形.若AMNB =1,AB=26,则NB 长为.99.如图,在△ABC 中,∠A=90°,点E 在线段AB 上,点D 在线段AC 上,且满足△ABC∽△ADE,若AE=6,EB=3,2AD=DC,则AD= ,DE= .10.如图,在等腰三角形ABC 中,AB=AC=12,BC=8,点D,E分别在边BC,AC 上,且BD=3,CE=2.求证:△ABD∽△BCE.11.如图,在△ABC 中,CD=CE,∠A=∠ECB.求证:CD2=AD·BE.12.将△ABC 沿BC 方向平移得到△DEF,△ABC 与△DEF 重叠部分的面积是△ABC 面积的一半.已知BC=2,求△ABC 平移的距离.13.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A′B′,∠A′(∠A′=∠A),以线段A′B′ 为一边,在给出的图形上用尺规作出△A′B′C′,使得△A′B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出己知、求证和证明过程.14.如图,在△ABC 中,EF∥BC,AB=3AE,若S 四边形BCFE=16,=()则S△ABCA.16 B.18 C.20 D.2415.如图,△ABC,△FGH 中,D,E 两点分别在AB,AC 上,F点在DE 上,G,H 两点在BC 上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE 与△FGH 的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:4➢思考小结1. 回顾相似三角形相关概念,并填空.①相似三角形对应边成比例,对应角相等;②两角分别相等的两个三角形相似;③两边成比例且夹角相等的两个三角形相似;④三边成比例的两个三角形相似.以上概念都是围绕三角形相似,角度相等,线段成比例等信息进行的.不同处在于:利用性质时,三角形相似是条件,角度相等,线段成比例是结论;利用判定时,角度相等,线段成比例是,三角形相似是.由此我们可以发现,当碰到线段成比例和角度相等等条件或结论时,要考虑相似三角形的应用.【参考答案】➢巩固练习1. 32;15;70°;60°22. 12;33. 20;7.2;3 3 54. ①②③5. B6. B7. 3;1;4:5:6 2 38. 189. 4;3 610. 证明略11. 证明略12. △ABC 平移的距离为2 2 .13. 证明略14. B15. D➢ 思考小结1. 条件;结论。
相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF及BE相交于点G,且∠EDF=∠ABE.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD 交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD :S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,及AB相交于点E,EC及AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE及△ABC的外角平分线CE交于点E.(2)设DE及AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC 中,CD 平分∠ACB,BE∥BC 交AC 于点E .(1)求证:AE•BC=AC•CE;(2)若S △ADE :S △CDE =4:3.5,BC=15,求CE 的长.23.如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC 中,∠CAB=90°,AD⊥BC 于点D ,点E 为AB 的中点,EC 及AD 交于点G ,点F 在BC 上.(1)如图1,AC :AB=1:2,EF⊥CB,求证:EF=CD .(2)如图2,AC :AB=1:,EF⊥CE,求EF :EG 的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP及MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE及△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这及三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,=AC•BC=BE•AF,∴S△ABC∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD :S△ADB﹦1:2,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD =S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即 QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC, ∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD 平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE, ∴=,即AE•BC=AC•CE;(2)∵S △ADE :S △CDE =4:3.5,∴AE:CE=4:3.5, ∴=,∵由(1)知=, ∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD及△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE .在△AEH 中,∵∠AHE=90°,∠AEH=∠B=30°, ∴cos∠AEH==, ∴EH=AE . ∵点E 为AB 的中点,∴BE=AE,∴EF:EG=EQ :EH=BE :AE=1:=:3.25.(1)证明:如图1,连接PN ,∵N、P 分别为△ABC 边BC 、CA 的中点, ∴PN∥AB,且. ∴△ABF∽△NPF, ∴.∴BF=2FP.(2)解:如图2,取AF 的中点G ,连接MG , ∴MG∥EF,AG=GF=FN .∴△NEF∽△NMG,∴S △NEF =S △MNG =×S △AMN =××S △ABC =S .26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。
相似三角形判定专项练习30 题(有答案)相似三角形复习【知识要点】1、相似三角形的定义三边对应成 _________,三个角对应________的两个三角形叫做相似三角形.2、相似三角形的判定方法1.两个三角形相似,一般说来必须具备下列六种图形之一:2.两个角对应相等的两个三角形 __________ .3.两边对应成 _________ 且夹角相等的两个三角形相似.4.三边对应成比例的两个三角形 ___________ .1、对应角相等2、对应边成比例性质:3、对应周长比等于相似比4、对应面积比等于相似比的平方、两角对应相等1判定:、两边对应成比例,且夹角相等2、三边对应成比例31. 相似比:相似三角形对应边的比叫做相似比。
当相似比等于 1 时,这两个三角形不仅形状相同,而且大小也相同,这样的三角形我们就称为全等三角形。
全等三角形是相似三角形的特例。
2.相似三角形的判定:①两角对应相等,两三角形相似。
②两边对应成比例,且夹角相等,两三角形相似。
③三边对应成比例,两三角形相似。
3.相似三角形的性质:①相似三角形的对应角相等。
②相似三角形的对应线段(边、高、中线、角平分线)成比例。
③相似三角形的周长比等于相似比,面积比等于相似比的平方。
页脚内容 1【典型例题】1、如图在 4 ×4 的正方形方格中,△ ABC 和△ DEF 的顶点都在长为 1 的小正方形顶点上.( 1)填空:∠ ABC=______, BC=_______.( 2)判定△ ABC 与△ DEF 是否相似?2、如图所示, D 、 E 两点分别在△ ABC 两条边上,且 DE 与 BC 不平行,请填上一个你认为适合的条件 _________ ,使得△ ADE ∽△ ABC .并证明3、如图,在△ ABC 中, AB=AC ,点 D 、E 、F 分别在 AB 、BC 、AC 边上, DE=DF ,∠ EDF=∠ A .(1)求证:DE AB. (2)证明: BDE 与 EFC 相似。
相似三角形的判定与性质练习题一、单选题1.如果两个相似三角形的相似比是1:2, 那么这两个相似三角形的面积比是( ) A.2:1 B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E,连接BE,过点D 作BE 的平行线交AC 于点F,则下列结论错误的是( )A. AD AE BD EC= B. AF DF AE BE= C. AE AF EC FE= D. DE AF BC FE = 3.下列四条线段中,不能组成比例线段的是( )A.3,6,2,4a b c d ====B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C. AD AC AE AB =D. AD AE AB AC= 5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对角线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三角形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个12.如图,在ABC △中,CB CA =,90ACB ∠︒=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有( ) A.1个 B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平行四边形ABCD 中, E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则:?DE EC = ( ) A. 2:3B. 2:5C. 3:5D. 3?:?2二、证明题15.如图,已知,,B C E 三点在同一条直线上,ABC △与DCE △都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ≅△△;(2)AG AF GC FE=. 16.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ⋅=⋅.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABC FCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P .求证:2.PD PB PC =⋅19.如图,//AB FC ,D 是AB 上一点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ≅△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂足分别为,M N .求证:(1)AMB AND △△;(2)AM MN AB AC=. 三、解答题21.如图,在4x3的正方形方格中,ABC △和DEC △的顶点都在边长为1的小正方形的顶点上.(1) 填空:ABC ∠= ,BC = ;(2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P,Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么1.设△POQ 的面积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的面积比为1:4,求边AB 的长.24.如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标. 25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,用()t s 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三角形与ABC △相似?四、填空题26.如图,在直角梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上一个动点,当PC PD +的和最小时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AO CO.28.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=︒,则DEF ∆与ABC ∆的面积之比为__________ 29.已知578a b c ==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取一点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三角形ABC 的边长为2,以BC 边上的高1AB 为边作正三角形11AB C ,ABC △与1ABC △公共部分的面积记为1S ,再以正三角形11AB C 的边1C 上的高2AB 为边作正三角形22AB C ,11AB C △与22AB C △公共部分的面积记为2S ,……,以此类推,则n S = .(用含n 的式子表示,n 为正整数)33.如图,在正方形ABCD 中,点E 是BC 边上一点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FG AG=________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成比例B 选项,因为1232,2226==,所以,,,a b c d 四条线段成比例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成比例D 选项,因为2252325,55515==,所以,,,a b c d 四条线段成比例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两角分别相等的两个三角形相似,可以得出ABC AED ~△△;当AD AC AE AB=时,由两边成比例且夹角相等的两个三角形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D.5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,1 2.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB ∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,5555DF DF BD BD ∴=∴==⨯=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ∆~∆,∴DE EF BC CF=. ∴点E 是边AD 的中点, ∴12AE DE AD ==, ∴12EF CF =. 7.答案:B解析:ABC ∆中, 90,6,3,:2ABCAB BC AB BC ∠====. A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =∆~∆,故本选项不符合题意; B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠∆与ABC ∆不相似,故本选项符合题意; C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =∆~∆,故本选项不符合题意; D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =∆~∆,故本选项不符合题意; 故选:B.8.答案:C解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三角形点评:该题主要考查学生对相似三角形概念的理解,以及对其性质的应用。
专题-相似三角形判定与性质专题典型训练题1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
专题典型题考法及解析【例题1】如图,在Rt△ABC中,△C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ△AB 交BC于点Q,D为线段PQ的中点,当BD平分△ABC时,AP的长度为()B.C.D.A.【例题2】在△ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【例题3】如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【例题4】如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【例题5】如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.专题典型训练题一、选择题1.如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.43.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE △BC ,若AD =2,AB =3,DE =4,则BC 等于( )A .5B .6C .7D .84.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( )A .2B .3C .2D .55.如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .= B .= C .= D .=6. 如图,在ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC 的面积为( ) A.B .4 C. D .8D ABC7.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG =()A.2:3B.3:2C.9:4D.4:99.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题10.如图所示,Rt△ABC中,△C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的△P与△ABC的一边相切时,AP的长为.11. 一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.12.如图,矩形ABCD 中,AB =3,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF的长是 .13.如图,在矩形ABCD 中,AD =3AB =310.点P 是AD 的中点,点E 在BC 上,CE =2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN =__________.14.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)15.如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .P EDA三、解答题16.如图,△ABD=△BCD=90°,DB平分△ADC,过点B作BM△CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.在矩形ABCD中,AE△BD于点E,点P是边AD上一点.(1)若BP平分△ABD,交AE于点G,PF△BD于点F,如图△,证明四边形AGFP是菱形;(2)若PE△EC,如图△,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.18.如图,Rt△ABC中,△ACB=90°,AC=BC,P为△ABC内部一点,且△APB=△BPC=135°.(1)求证:△P AB△△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.19.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.。
相似三角形的判定和性质1.相似三角形定义:就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。
2.判定:(1)平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似直角三角形相似判定定理(1)斜边与一条直角边对应成比例的两直角三角形相似。
直角三角形相似判定定理(2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
3.性质:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.(6)相似三角形的传递性。
典型例题例1、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有例2、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE 是直角三角形时,t的值为例3、如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是例4、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=例5、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG ⊥AE于G,BG=,则△EFC的周长为例6、如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=例7、如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为例8、如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD 的面积为例9、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为例10、如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于练习1.如图1,△OED∽△OCB,且OE=6,EC=21,则△OCB与△OED的相似比是()A.37B.52C.85D.352.如图2,点E,F分别在矩形ABCD的边DC,BC上,∠AEF=90°,∠AFB=2∠DAE=72°,则图中甲、乙、丙三个三角形中相似的是()A.只有甲与乙B.只有乙与丙C.只有甲与丙D.甲与乙与丙3.如图3,D是AB的中点,E是AC的中点,则△ADE与四边形BCED的面积比是()A.1 B.12C.13D.144.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍5.对于下列说法:(1)相似且有一边为公共边的两个三角形全等;(2)相似且面积相等的两个三角形全等;(3)相似且周长相等的两个三角形全等.其中说法正确的有()A.0个B.1个C.2个D.3个6.我国国土面积约为960万平方千米,画在比例尺为1∶1 000万的地图上的面积约是()A.960平方千米 B.960平方米 C.960平方分米 D.960平方厘米7、如果△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()A.∠A:∠A′B.A′B′:AB C.∠B:∠B′D.BC:B′C′8、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50° C.40°D.70°9、三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()A.15cm B.18cm C.21cm D.24cm10如图AB∥CD∥EF,则图中相似三角形的对数为()A.1对B.2对 C.3对D.4对11△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()A.B. C.D.12、在比例尺1:10000的地图上,相距2cm的两地的实际距离是()A.200cm B.200dm C.200m D.200km13、已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是()A.B. C.D.14、若则下列各式中不正确的是()A.B. C.D.15、已知△ABC 中,D 、E 分别在AB 、AC 上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是( )A .B .C .D .16、如图:在△ABC 中,DE ∥AC ,则DE :AC=( )A .8:3B .3:8C .8:5D .5:817.已知ABC A B C '''△∽△,且4AB =,6A B ''=,8B C ''=则BC= .18.两个相似三角形,其中一个三角形的两个内角分别是40°和30°,则另一个三角形的最大内角的度数是 .19.如图4,∠ABC=∠CDB=90°,AC=a ,BC=b ,当BD 与a 、b 满足关系 时,△ABC ∽△CDB .20.如图5,P 是等腰梯形ABCD 上底AD 上一点,若∠A=∠BPC ,则和△ABP 相似的三角形有 个.21.相似三角形对应 、 、 的比都等于相似比.22.相似多边形的周长比等于 ,面积比等于 .23.把一个三角形三边同时扩大4倍,则周长扩大了 倍,面积扩大了 倍.24.两个相似三角形对应中线的比为23,则面积比是 . 25.如图6,已知△ABC ∽△DEF ,AB=6,BF=2,CE=8,CA=10,DE=15.求线段DF ,FC 的长.26.要做两个形状相同的三角形框架,其中一个三角形框架的三边长分别是4,5,6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?想想看,你有几种解决方案?27.如图7,已知△ABC ∽△DEF ,AM 、DN 是中线,试判断△ABM 与△DEN 是否相似?为什么?28.如图8,AD 是△ABC 角平分线,试判断BD AB DC AC=是否成立?3.3相似三角形的性质和判定试题练习答案例1∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.例2∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠DBE=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠EDB=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.例3∴△ADE∽△ABC,则=,∵DE=1,AD=2,DB=3,∴AB=AD+DB=5,∴BC==52.例4∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.例5解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.例6解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.例7∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.例8解答:解:∵∠DAC=∠B ,∠C=∠C ,∴△ACD ∽△BCA ,∵AB=4,AD=2,∴△ACD 的面积:△ABC 的面积为1:4,∴△ACD 的面积:△ABD 的面积=1:3,∵△ABD 的面积为a ,∴△ACD 的面积为a ,例9解:如图,设正方形S 2的边长为x ,根据等腰直角三角形的性质知,AC=x ,x=CD , ∴AC=2CD ,CD==2,∴EC 2=22+22,即EC=;∴S 2的面积为EC 2==8;∵S 1的边长为3,S 1的面积为3×3=9,∴S 1+S 2=8+9=17. 例10解:∵AB=AC ,∴∠ABC=∠ACB ,又∵∠CBD=∠A ,∴△ABC ∽△BDC ,同理可得:△ABC ∽△BDC ∽△CDE ∽△DFE ,∴=,=,=,解得:CD=,DE=,EF=.一、1~6.BDCDC D二、7.163 8.110 9.2b BD a= 10.2 11.高、中线、角平分线 12.相似比,相似比的平方 13.4,16 14.49 三、15.25DF =,2FC =.16.可选料有三种方案,三角形框架边长分别是①2,2.5,3;②1.6,2,2.4;③43,53,2. 17.相似;可用三边对应成比例或两边对应成比例且夹角相等说明.18.过点B 作BE AC ∥交AD 延长线于点E ,则可得BDE CDA △∽△, 从而BD BE DC AC =,然后再由E DAC BAD ==∠∠∠,得BE AB =,故BD AB DC AC=成立.。
相似三角形的性质与判定副标题题号—二总分得分一、选择题(本大题共7小题,共分)1.如图,在△ ABC中,点P在边SB上,则在下列四个条件中^ :①ZACP 二NB;②ZAPC = ZACB;@AC2 = AP・AB;④AB・CP二AP・CB,能满足△ APC与△ ACB相似的条件是()A. B. C. D.①②③【答案】D【解析】【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据有两组角对应相等的两个三角形相似可对①©进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③(④ 进行判断.【解答】解:当ZACP = ZB, T ZA = ZA,所以△ APC" △ ACB;当ZAPC = ZACB, T ZA 二NA,所以△ APC" △ ACB;当AC2 = AP ・ AB,即AC\ AB = AP-人G T “ 二ZA所以△ APC" △ ACB;当AB ・ CP = AP ・ CB,即PS BC = AP:妙而ZPAC = ZCAB,CEAC 2-xX AB =^所以不能判断△ APC 和△ ACB 相似• 故选Q ・2.如图,在矩形中,AB = n BC 二2,将其折叠使力落在对角线加上,得到折痕力仁那么滋的长度为()3.A. 0-1B. Qi22 【答案】c 【解析】【分析】D.毎1 ~2-根据对称性可知:BE = FE, ZAFE 二ZABE 二90 °,又ZC = ZC ,所以△ CEFS △ CAB ,根据相似的性质可得出:兰=些,BE = EF =些X AB ,在△ ABC AB ACAC中,由勾股定理可求得>4C 的值,AB = b CE = 2-BE ,将这些值代入该式求出处的值.【解答】 解:设8F 的长为匕贝l 〕BE 二FE 二x 、CE 二2-x 在毗△ ABC 中,AC 二 X ;AB 2 + BC 2 = <5T ZC 二 NO ZAFE 二 ZABE = 90CEF°° △ CAB 〈两对对应角相等的两三角形相似}故选:c. 4.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测 得一根长为的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全 落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影 高为1.2m ,又测得地面的影长为2.伽,请你帮她算一下,树高是()■ 竺—些 • * AB = ACBE xV5. 丄而CB 二126.如图,△ A,B ,C ,是△ ABC 在以点0为位似中心经 过位似变换得A. 4: 3B. 3: 4C. 9: 16根据竹竿的高与其影子的比值和树高与其影子的比值相同豐・'• BD = 0. 96,树在地面的实际影子长是0. 96 + 2. 6 = 3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得亠_丄3.56 ~ C.8・'• x = 4. 45»树高是4. 45m- 故选C.此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其 影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.【答案】A【解析】【分析】本题考查了位似变换、位似图形和相似三角形的性质的知识点,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做 位似图形,这个点叫做位似中心•先求出位似比,根据位似比等于相似比,再由相似三 角形的面积比等于相似比的平方即可■A ・ 3.25m B. 4.25m C - 4.45mD. 16:【解答】解:由位似变换的性质可知,A' B z //AB,A' C‘ //AC,/-A A' B‘ C‘ s △ ABC,ABC的面积与△ A z B r C‘的面积比是16: 9,.*.A ABC与△ AV C‘的相似比为4: 3,,OA 4故选A.7.如图,在平面直角坐标系“0/中,矩形的顶点0在坐标原点,边〃在x轴上, 0C在y轴上,如果矩形OA,B zC z与矩形关于点0位似,且矩形OA,B7 C z 的面积等于矩形少%面积的1,那么点B,的坐标是()Ay10. A ---------------- ■-4 0■ AA. (-2. 3)B. (2. -3)C. (3. -2)或(-2. 3)D. (-2. 3)或(2, •-3)【答案】D【解析】【分析】此题考查了位似图形的性质有关知识,由矩形OA,B,L与矩形关于点0位似,且矩形OA,B,L的面积等于矩形〃%面积的1,利用相似三角形的面积比等于相似比4的平方,即可求得矩形OA,B,L与矩形少%的位似比为1: 2,又由点0的坐标为「4.6),即可求得答案. 【解答】解:T矩形OA,B,L与矩形关于点0位似,0A'A. 4: 9【解析】四边形「A 是以点00A z =2: 3, /. DA-=0A- 0A z = 2: 3,四边形力她?与四边形A ,B z C z D z 的面积比为:(?)2 = S/.矩形OA ,B z C z s 矩形 OABC,•/矩形OA ,B z C z 的面积等于矩形OS%面积的],4.・.位似比为:1: 2,•.•点3的坐标为(・4.6),/.点B"的坐标是:(-2, 3)或(2.-3).故选Q ・门・如图,四边形朋〃和屮B z C z D z 是以点0为位似中心的位似图形,若加则四边形与四边形“ B Z C z D z 的面积比为()【答案】A故选:A.根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是 解题的关键.12.如图,在平面直角坐标中,正方形人BCD 与正方形BEFG yGF£在“轴上,若正方形昭%的边长为6,则C点坐标为( )13.14.A・(3.2) B. (3. 1) C. (2.2) D. (4.2)【答案】A【解析】解:正方形力%•。
华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是;最小值是.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=x cm(x>0),四边形BCDP的面积为y cm2.求y关于x的函数关系式.14.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE ∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.15.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O 于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.16.已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.17.腰长为6的等腰直角△ABC中,D是BC上的一动点(不与BC重合),过点D作AB,AC的垂线,垂足为E,F.(1)证明:△BDE∽△CDF;(2)设BD=x,四边形AEDF的面积为y,请写出y与x之间的函数关系式,并求出当x为何值时y最大?y的最大值是多少?18.已知:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1,延长CD交AE于K(1)求证:AE=CD,AE⊥CD.(2)类比:如图2所示,将(1)中的Rt△DBE绕点B逆时针旋转一个锐角,问(1)中线段AE,CD之间数量关系和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在图2中,将“AB=BC,DB=EB”改为“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系怎样?请直接写出线段AE,CD间的数量关系和位置关系.19.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:AP=PD;(2)若⊙O的半径为5,AF=7,求的值.20.如图,点D为线段AB延长线上一点,△ABC和△BDE分别是以AB,BD为斜边的等腰直角三角形.连接CE并延长,交AD的延长线于F,△ABC的外接圆圆O交CF与点M.若AB=6,BD=2.(1)求CE长度;(2)证明:AC2=CM•CF;(3)求CM长度.21.如图,在△ABC中,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.(1)求证:△ABD∽△AHG.(2)若4AB=5AC,且点H是AC的中点,求的值.22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5,(1)如图(1),若点P是弧AB的中点,求PB的长;(2)如图(2),过点P作PD⊥BC于点E,交AB于点D,若=,求PC的长.23.如图,△ABC为一锐角三角形,BC=12,BC边上的高AD=8.点Q,M在边BC上,P,N分别在边AB,AC上,且PNMQ为矩形.(1)设MN=x,用x表示PN的长度;(2)当MN长度为多少时,矩形PNMQ的面积最大,最大面积是多少?(3)当MN长度为多少时,△APN的面积等于△BPQ与△CMN之和?24.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s 的速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)t为何值时,△CPQ的面积等于△ABC面积的?(2)运动几秒时,△CPQ与△CBA相似?(3)在运动过程中,PQ的长度能否为1cm?试说明理由.25.如图,分别延长平行四边形ABCD的边CD、AB到E、F,使DE=BF=CD,连接EF,分别交AD,BC于G,H,连接CG,AH(1)求证:四边形AGCH为平行四边形;(2)求△DEG和△CGH的面积比.26.如图,△ABC中,D,E分别为BC,AB中点,连接EC,AD,且AD与EC交于点F,延长AD至点G使GD=AD,连结CG.(1)请在图中找出一对全等三角形,并证明.(2)若AB=x,EB:DF=3:2,试用含x的代数式表示线段AG的长.27.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F是线段AD上的三等分点,连接BE、CE、BF、CF,若,且BC=4a.(1)求四边形ABEC的面积;(2)写出与△CEF相似但不全等的三角形,并证明其中的一对.28.阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:AD的取值范围是.参考小军思考问题的方法,解决问题:如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC 于点D.求证:PA•CD=PC•BD.29.如图,△ABC中,BC=2AB,点D、E分别是BC、AC的中点,过点A作AF∥BC交线段DE的延长线于点F,取AF的中点G,联结DG,GD与AE交于点H.(1)求证:四边形ABDF是菱形;(2)求证:DH2=HE•HC.30.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?31.如本题图①,在△ABC中,已知∠ABC=∠ACB=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求∠ACD的大小;(2)在线段CD的延长线上取一点F,以FD为角的一边作∠DFE=α,另一边交BD延长线于点E,若FD﹣kAD(如本题图②所示),试求的值(用含k 的代数式表示).32.如图,四边形ABCD是平行四边形,点E为DC延长线上一点,联结AE,交BC边于点F,联结BE.(1)求证:AB•AD=BF•ED;(2)若CD=CA,且∠DAE=90°,求证:四边形ABEC是菱形.33.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4.(1)判断△ABE与△ADB是否相似,并说明理由;(2)求∠C的度数.34.如图,AD是△ABC的高,点Q、M在BC边上,点N在AC边上,点P在AB 边上,AD=60cm,BC=40cm,四边形PQMN是矩形.(1)求证:△APN∽△ABC;(2)若PQ:PN=3:2,求矩形PQMN的长和宽.35.如图,在直角三角形ABC中,∠C=90°,矩形DEFG的四个顶点都在△ABC 的边上,已知:AC=8,BC=6.(1)当四边形DEFG为正方形时,求EF的长;(2)△BEF与△FCG能全等吗?若能,请你求出EF的长;若不能,请说明理由;(3)△BEF与△ADG能全等吗?若能,请你求出EF的长;若不能,请说明理由.36.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是.(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.37.如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M 在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=;,BD=2,求半圆的直径.38.在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC 于E,PF∥AC交AB于F.用x表示;(1)设BP=x,将S△PEF(2)当P在BC边上什么位置时,S值最大.39.如图,已知在梯形ABCD中,AD∥BC,∠A=90°,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果BE2=BF•BC,求证:∠BEF=∠CEF.40.如图,在Rt△ABC中,∠B=90°,AB=9cm,BC=2cm,点M,N分别从A,B 同时出发,M在AB边上沿AB方向以每秒2cm的速度匀速运动,N在BC边上沿BC方向以每秒1cm的速度匀速运动(当点N运动到点C时,两点同时停止运动).设运动时间为x秒,△MBN的面积为ycm2.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)求△MBN的面积的最大值.41.如图,在等腰三角形ABC中,AD⊥BC于点D,AD=3,DC=4,点M在线段AC上运动,ME⊥AD于点E,连结BE并延长交AC于点F,连结BM.设=m (0<m<1),△BEM的面积为S.(1)当m=时,求的值.(2)求S关于m(0<m<1)的函数解析式并求出S的最大值.(3)设=k,猜想k与m的数量关系并证明.42.以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△COB的形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长.43.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB 的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(s)(0<t<4).根据上面的信息,解答下面的问题:(1)当t为何值时,PQ⊥AB?(2)当点Q在BE之间运动时,设五边形PQBCD的面积为y(cm2),求y与t 之间的函数表达式.44.如图,已知AB是⊙O的直径,点E在线段AB上,CD⊥AB于G,连接DE 交⊙O于F,连接CF交AB延长线于P.求证:OF2=OE•OP.45.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为,AC的长为.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.46.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),连接DE,作CF⊥DE,CF与边AB、线段DE分别交于点F,G;(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.47.如图,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF ∥AD交BC于点F,且BF2=BD•BC,联结FG.(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形.48.在▱ABCD中,点E在BC边上,点F在BC边的延长线上,且BE=CF.(1)求证:MA=MF;(2)连接AF,分别交DE、CD于M、N,若∠B=∠AME,求证:ND•ME=AD•MN.49.如图,在梯形ABCD中,AB∥CD,AD=BC,E是CD的中点,BE交AC于F,过点F作FG∥AB,交AE于点G.(1)求证:AG=BF;(2)当AD2=CA•CF时,求证:AB•AD=AG•AC.50.已知:如图,在四边形ABCD中,AB∥CD,点E是对角线AC上一点,∠DEC=∠ABC,且CD2=CE•CA.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷参考答案与试题解析一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).(1)如图1,连结AE.先由DE=DF,得出∠DEF=∠DFE,由∠ADF+∠DEC=180°,【分析】得出∠ADF=∠DEB.由∠AFE=∠BDE,得出∠AFE+∠ADE=180°,那么A、D、E、F四点共圆,根据圆周角定理得出∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.再由∠ADF=∠DEB=∠AEF,得出∠AEF+∠AED=∠DEB+∠AED,则∠AEB=∠DEF=∠BAE,根据等角对等边得出AB=BE;(2)如图2,连结AE.由A、D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到=.在直角△DEF中,利用勾股定理求出EF==DF,然后将AF=m,DE=kDF代入,计算即可求解.【解答】解:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠DFE=∠BAE,∴AB=BE;(2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠ADF=∠AEF,∴∠DEB=∠AEF.在△BDE与△AFE中,,∴△BDE∽△AFE,∴=.在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴==,∴BD=.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,四点共圆,圆周角定理,勾股定理等知识,有一定难度.连结AE,证明A、D、E、F四点共圆是解题的关键.2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.【分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出,,进而得出即,即可得出答案;②由(1)证得△APB≌△APD,得到∠ABP=∠ADP,根据平行线的性质,得到∠G=∠ABP,(Ⅰ)若DG=PG根据△DGP∽△EBP,得DG=a,由勾股定理得到FH=,于是得到结论;(Ⅱ)若DG=DP,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,设AH=x,求得FH=,得到tan∠DAB= =.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB,∴∠DAP=∠BAP,在△APB和△APD中,,∴△APB≌△APD,∴PB=PD;(2)解:①∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∴△AFP∽△CBP,∴,∵,∴,∴,由(1)知PB=PD,∴,∴PF=PD.②由(1)证得△APB≌△APD,∴∠ABP=∠ADP,∵GC∥AB,∴∠G=∠ABP,∴∠ADP=∠G,∴∠GDP>∠G,∴PD≠PG.(Ⅰ),若DG=PG,∵DG∥AB,∴△DGP∽△EBP,∴PB=EB,由(2)知,设PF=2a,则PB=BE=PD=3a,PE=PF=2a,BF=5a,由△DGP∽△EBP,得DG=a,∴AB=AD=2DG=9a,∴AF=6a,如图1,作FH⊥AB于H,设AH=x,则(6a)2﹣x2=(5a)2﹣(9a﹣x)2,解得x=a,∴FH=,∴tan∠DAB=;(Ⅱ)若DG=DP,如图2,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,∴(4m)2﹣x2=(5m)2﹣(6m﹣x)2,解得x=m,∴FH=,∴tan∠DAB==.【点评】此题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,锐角三角函数,平行线的性质,菱形的性质,正确的作出辅助线是解题的关键.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.【分析】(1)根据圆周角定理求得AD⊥BC,根据等腰三角形三线合一的性质即可证得结论;(2)先求得∠E=∠C,根据等角对等边求得BD=DC=DE=3,进而求得AD=1,然后根据勾股定理求得AB,即可求得圆的半径;(3)根据题意得到AC=,BC=6,DC=3,然后根据割线定理即可求得EC,进而求得AE.【解答】(1)证明:∵AB是圆O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)解:∵AB=AC,∵∠B=∠E,∴∠E=∠C,∴BD=DC=DE=3,∵BD﹣AD=2,∴AD=1,在RT△ABD中,AB==,∴⊙O的半径为;(3)解:∵AB=AC=,BD=DC=3,∴BC=6,∵∠B=∠E,∠C=∠C,∴△EDC∽△BAC,∵AC•EC=DC•BC,∴•EC=3×6,∴EC=,∴AE=EC﹣AC=﹣=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理的应用以及割线定理的应用,熟练掌握性质定理是解题的关键.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【分析】(1)易证DE∥BC,由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD 为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【解答】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【点评】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,【分析】由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.【解答】(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.【点评】本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.【分析】利用勾股定理求出BC,过B向MC作垂线,利用三角形相似求BE.【解答】解:如图:在Rt△ABC中,BC==3,作BE⊥MC,垂足是E,∵∠ACB=∠BEC=90°,∴△ACB∽△BCE,∴,∴,∴BE=,∴点B到直线MC的距离.【点评】本题考查了相似三角形的判定和性质,勾股定理作辅助线构造相似三角形是解题的关键.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.【分析】(1)由圆内接四边形的性质得出∠CED=∠CBA,再由公共角相等,即可证出△CDE∽△CAB;(2)由等腰三角形的性质得出∠C=∠CBA,证出∠C=∠CED,得出DE=CD,再由圆周角定理和三线合一性质得出CD=BD,即可得出DE=BD;(3)由割线定理求出CE,由圆周角定理得出∠AEB=∠BEC=90°,根据勾股定理即可求出BE的长.【解答】(1)证明:连接AD,如图所示:∵四边形ABDE是⊙O的内接四边形,∴∠CED=∠CBA,又∵∠C=∠C,∴△CDE∽△CAB;(2)证明:∵AB=AC,∴∠C=∠CBA,∴∠C=∠CED,∴DE=CD,∵AB为⊙O的直径,∴∠ADB=90°,∴CD=BD,∴DE=BD;(3)解:由割线定理得:CE•AC=CD•BC,∵CD=BD=BC=3,AC=AB=5,∴CE===,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BEC=90°,∴BE===.【点评】本题考查了圆内接四边形的性质、相似三角形的判定、等腰三角形的性质、圆周角定理、割线定理、勾股定理;本题有一定难度,特别是(2)(3)中,需要运用圆周角定理、割线定理和勾股定理才能得出结果.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)【分析】(1)根据矩形的性质易证,OA=OC,AB∥CD,根据AB∥CD,得到∠EAO=∠FCO,满足ASA可证;(2)①先证△MOC∽△ACB,得MC:AC=OC:BC,计算MC,即可求出BM;②若△BMO是等腰三角形,则可能BM=OM,OB=BM,OB=OM,分类讨论即可.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(AAS);(2)①解:如图1,∵MO⊥AC,∴∠MOC=90°,∵∠ABC=90°,∴∠MOC=∠ABC,又∵∠MCO=∠MCO,∴△MOC∽△ACB,∴MC:AC=OC:BC,∵AB=3,BC=4,∴AC=5,∴OC=2.5,∴MC:5=2.5:4,∴MC=,∴BM=;②如图2,△BMO是等腰三角形时,有三种情况:(Ⅰ)OB=OM,此时M与C重合,BM=4;(Ⅱ)OB=BM,BM=OB=BD=2.5;(Ⅲ)BM=OM,作MN⊥BD,∴BN=B0=;∵△BMN∽△BDC∴,∴BM===,∴BM=2.5或4或.【点评】本题主要考查了三角形全等的判定、相似三角形的判定与性质、等腰三角形的判定与性质,第3小题考查学生思维的全面性,恰当分类讨论是解决问题的关键.9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是4;最小值是.【分析】(1)连接AD、BC,由∠AOB=∠COD=90°∠ABO=∠DCO=30°,得到,∠AOD=∠BOC,推出△AOD∽△BOC,求得∠OAD=∠CBO,,证得AD⊥BC由于点E、F、M分别是AC、CD、DB的中点,根据三角形的中位线的性质得到EF∥AD,EF=AD,于是得到MF∥AD,MF=AD,在Rt△EFM中,=;(2)过O作OE⊥AB于E,由已知条件求出当P在点E处时,点P到O点的距离最近为,当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=4.【解答】解:(1)不变;=,如图1,连接AD、BC交于一点Q,AD交BO于P,∵∠AOB=∠COD=90°,∠ABO=∠DCO=30°,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴∠OAD=∠CBO,,∵∠APO=∠BPQ,∴∠BQP=∠AOB=90°,∴AD⊥BC,∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,EF=AD,∴MF∥BC,MF=BC,在Rt△EFM中,=;(2)如图2,过O作OE⊥AB于E,∵BO=3,∠ABO=30°,∴AO=,AB=,∴AB•OE=OA•OB,∴OE=,∴当P在点E处时,点P到O点的距离最近为,这时当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;如图4,当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=3+1=4,∴线段PN长度的最小值为,最大值为4.故答案为:4,.【点评】此题考查了旋转的性质、相似三角形的判定与性质、直角三角形的判定和性质三角形的中位线的判定和性质、三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.【分析】(1)如图1,连接BN并延长,与DE的延长线相交于点F,由∠ABC+∠ADE=180°,得到BC∥DE,得到∠CBN=∠EFN,∠BCN=∠FEN,证出△CBN ≌△EFN,得到BN=FN,EF=CB=AD,于是得到DF=DE+EF=AB+BC=AB+AD=BD,根据三角形的中位线的性质即可得到结论;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,证得△DEF∽△DAB,得到.由sin∠BAC=,得到tan∠BAC=,即DF=BD,得到MN=DF=BD即可得到结论.【解答】解:(1)MN⊥BD,MN=BD;如图1,连接BN并延长,与DE的延长线相交于点F,∵∠ABC+∠ADE=180°,∴BC∥DE,∴∠CBN=∠EFN,∠BCN=∠FEN,∵CN=EN,在△CBN与△EFN中,,∴△CBN≌△EFN,∴BN=FN,EF=CB=AD,∴DF=DE+EF=AB+BC=AB+AD=BD,又∵BM=MD,∴MN=DF=BD,MN∥DF,∴∠BMN=∠BDE=90°,∴MN⊥BD;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,∴EF=CB=DE,∠BCE=∠CEF,∵∠ABC+∠ADE=180°,∴∠BAD+∠BCE+∠CED=540°﹣180°=360°,∵∠DEF+∠CEF+∠CED=360°,∴∠BAD=∠DEF,∵,∴△DEF∽△DAB,∴.∵sin∠BAC=,∴tan∠BAC=,即DF=BD,∴MN=DF=BD.即.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,梯形的中位线的性质,正确的作出辅助线是解题的关键.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS 即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.【点评】此题考查了全等三角形的判定与性质,相似三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,【分析】然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm ,BC=9cm ,P 是射线DE 上的动点.设DP=x cm (x >0),四边形BCDP 的面积为y cm 2.求y 关于x 的函数关系式.【分析】(1)先利用等角的余角相等得到∠B=∠DAC ,则可判断Rt △DFA ∽Rt △ACB ,根据相似三角形的性质得AB•AF=BC•AD ,然后利用AD=CD 代换即可得到结论;(2)连结PC ,如图,先在Rt △ACB 中利用勾股定理计算出AC=12,再利用等腰三角形的性质AF=FC=AC=6,接着证明DE ∥BC ,则P 点到BC 的距离等于CF ,然后根据三角形面积公式和y=S △CPD +S △BCP 即可得到y 与x 的函数解析式.【解答】(1)证明:∵∠DAB=∠ACB=90°,∴∠DAC +∠BAC=90°,∠BAC +∠B=90°,∴∠B=∠DAC ,∵DF ⊥AC ,∴∠DFC=90°,∴Rt △DFA ∽Rt △ACB ,∴=,即AB•AF=BC•AD ,而AD=CD ,∴AB•AF=CB•CD ;(2)解:连结PC ,如图,在Rt △ACB 中,∵AB=15,BC=9,∴AC==12,∵DF ⊥AC ,DA=DC ,∴AF=FC=AC=6,∵∠DFC=∠ACB=90°,∴DE ∥BC ,∴P 点到BC 的距离等于CF ,∴y=S △CPD +S △BCP=•x•6+•9•6=3x +27(x >0).【点评】本题考查了相似三角形的判断与性质:在判定两个三角形相似时,合理利用直角的作用.也考查了利用三角形面积公式列函数关系式.把四边形的面积化为两三角形面积的和是求函数关系式的关键.14.如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点.过点B 作BE ∥AD ,交⊙O 于点E ,连接ED(1)求证:ED ∥AC ;(2)若BD=2CD ,设△EBD 的面积为S 1,△ADC 的面积为S 2,且S 12﹣16S 2+4=0,求△ABC 的面积.【分析】(1)由AD 是△ABC 的角平分线,得到∠BAD=∠DAC ,由于∠E=∠BAD ,等量代换得到∠E=∠DAC ,根据平行线的性质和判定即可得到结果;(2)由BE ∥AD ,得到∠EBD=∠ADC ,由于∠E=∠DAC ,得到△EBD ∽△ADC ,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD=∠DAC ,∵∠E=∠BAD ,。
初中数学相似三角形的判定与性质专题练习1.定义各角对应相等,各边对应成比例的两个三角形叫做相似三角形.当相似比为1时,两个三角形就称为全等.2.判定(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;3.性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.4.相似三角形中常见的基本图形:条件:DE∥BC,∠1=∠B,∠1=∠B条件:AB∥DE ∠A=∠D CD是斜边AB上的高如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)【答案】∠ADE=∠ACB,答案不唯一【名师指南】此类问题是开放型问题,考查了相似三角形的判定,答案不唯一,熟练掌握相似三角形的判定方法是解题的关键.【例1】如图,在大小为4×4的正方形网格中,是相似三角形的是( )①② ③ ④A.①和②B.②和③C.①和③D.②和④【答案】C【解析】试题分析:本题主要应用两三角形相似的判定定理,有两个对应角相等的三角形相似,即可完成题目.:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;210由勾股定理求出③的各边长分别为2、2、2,25∴,,22222=225210=即,22222=5210=∴两三角形的三边对应边成比例,∴①③相似.故选C .考点: 相似三角形的判定.【例2】在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线最多可以作()A .2条B .3条C .4条D .6条【答案】C .考点:1.坐标与图形性质;2.相似三角形的判定.【名师指南】此类问题实际上考查了相似三角形的判定,学生容易错误选2条或3条,一般三角形满足条件的直线最多可以作4条,直角三角形满足条件的直线最多可以作3条.【例3】如图,下列条件中不能判定的是()A .B.C .D.【答案】A考点:三角形相似的判定.【例4】如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且,(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.【答案】(1)∠1=∠2;(2)△ABE∽△ACD.【解析】试题分析:(1)由,得到△ABC∽△AED,推出∠BAC=∠EAD,即可得到∠1=∠2;(2)由,得,根据两边对应成比例且夹角相等得到△ABE∽△ACD.试题解析:(1)∠1与∠2相等.在△ABC和△AED中,∵,∴△ABC∽△AED,∴∠BAC=∠EAD,∴∠1=∠2.(2)△ABE与△ACD相似.由,得,在△ABE和△ACD中,∵,∠1=∠2,∴△ABE∽△ACD.考点:相似三角形的判定与性质.【例5】如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________.【答案】8.5【解析】试题分析:因为△ADE∽△ABC,所以, 又因为AD=3,DC=4,AE=2,所以,解得BE=8.5.考点:相似三角形的性质.【例6】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.【答案】(1)证明见试题解析;(2)9.考点:1.等边三角形的性质;2.相似三角形的判定与性质.【名师指南】备考兵法:1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定, 要注意基本图形的应用,如“A型”“X型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题, 关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置, 用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.注意问题:1.在探索三角形是否相似时,我可以参照学习全等的方法(全等是相似的一种特殊情况):(1)寻找:缺什么找什么,例如已经知道有两边对应成比例,证明其夹角相等,则必定是证第三边也成比例;已知一组角相等,要证明夹这个角的两边成比例,则必定是再找一组角相等;等等.(2)构造:对于在题目中不能直截找到相似三角形的问题,我们还可以通过作辅助线的方法构造相似三角形,实现线段或角的转化将问题解决.当然这种情况要有一定的想象力与比较扎实的基础.(3)学会灵活转化:角的替换、比例式的替换、相等线段的替换,可以让我们更快捷地寻找证明相似的条件.2.在利用相似三角形的性质解题时注意下面几点常见的转化方法与解题的思路:(1)比例式的转化,利用不同的相似三角形所得到的比例式相互替代(或比例式中的相等的线段的替换),实现比例式的变更从而产生新的比例式.(2)利用比例式来求出线段之间的函数关系,用方程来求解.(3)应当根据求解的问题的形式,灵活把所得到比例式进行加减乘除运算,实现问题的转化.(4)在图形中注意添加辅助线的方法构造相似三角形或相似三角形的对应量.相似三角形中有关证(解)题规律与辅助线作法1、证明四条线段成比例的常用方法: (1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系2、证明题常用方法归纳:(1)总体思路:“等积”变“比例”,“比例”找“相似” (2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。
AD是Rt△ABC 斜边上的高 29. 相似三角形➢ 知识过关1. 相似三角形的概念:如果两个三角形的对应角_________,对应边_______,那么这两个三角形叫做相似三角形. 2. 相似三角形的性质:对应角________,对应边________;周长之比等于_______;面积之比等于_______.3. 相似三角形的判定(1)两_______对应相等的两个三角形相似;(2)两边对应成比例,且______相等的两个三角形相似; (3)_______边对应成比例的两个三角形相似;(4)若一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角边对应______,那这两个直角三角形相似. 4.相似三角形的几种基本图形DE △BC △B =△AED △B △ACDA 型➢ 考点分类考点1相似三角形的判定例1如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 为AD 的中点,连接BE 交AC 于点F ,连接FD .若∠BF A =90°,给出以下三对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABO .其中相似的有_____________(填写序号).CB BCD E ADAEDAAD B CODBACCAO D BX 型母子型∠B ∠CAC ∥BD CB D AOFE DCBA考点2相似三角形的性质例2如图1所示,AB △BD ,CD △BD ,垂足分别为B ,D .AD ,BC 交于点E ,过E 作EF △BD于点F ,则可以得到111AB CD EF+=.若将图1中的垂直改为斜交,如图2所示,AB △CD ,AD ,BC 交于点E ,过E 作EF △AB 交BD 于点F ,试问:111AB CD EF+=还成立吗?请说明理由.考点3相似三角形的判定和性质综合例3如图,在Rt △ABC 中,∠ACB =90°,点D 在AC 上 (1)已知:AC =4,BC =2,∠CBD =∠A ,求BD 的长;(2)取AB ,BD 的中点E ,F ,连接CE ,EF ,FC ,求证:△CEF ∽△BAD .➢ 真题演练1.如图,点D 、E 分别在△ABC 边AB 、AC 上,AB AD=AE CE=3,且∠AED =∠B ,那么AD AC的值为( )A .12B .13C .14D .23F EDCBA图1F EDCBA图22.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,下列结论中,错误的是( )A .AD AC=AC ABB .AD AC=CD BCC .AD AC=BD BCD .AD CD=CD BD3.如图,边长为a 的正方形ABCD 中,对角线AC ,BD 交于点O ,E 在BD 上,作EF ⊥CE 交AB 于点F ,连结CF 交BD 于H ,则下列结论:①EF =EC ;②△FCG ∽△ACF ;③BE •DH =a 2;④若BF :AF =1:3,则tan ∠ECG =14,正确的是( )A .①②④B .②③④C .①②③D .①②③④4.如图,在▱ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .下列结论:①EG GC=AG GD;②EF FC=BF DF;③FC GF=BF DF;④EAEB=AG AD;⑤CF 2=GF •EF ,其中正确的个数是( )A .5B .4C .3D .25.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针90°旋转后,得到△AFB ,连接EF .下列结论中正确的个数有( ) ①∠EAF =45°; ②△ABE ∽△ACD ; ③EA 平分∠CEF ; ④BE 2+DC 2=DE 2.A .1个B .2个C .3个D .4个6.如图,在矩形ABCD中,过点A作对角线BD的垂线并延长,与DC的延长线交于点E,与BC交于点F,垂足为点G,连接CG,且CD=CF,则下列结论正确的有()个①CE=AD②∠DGC=∠BFG③CF2=BF•BC④BG=GE−√2CGA.1B.2C.3D.47.如图,在△ABC中,AC=BC=5,AB=6,以BC为边向外作正方形BCDE,连接AD,则AD=.8.如图,已知正方形ABCD的对角线AC与BD相交于点O,若AC=2√2cm,点E在DC 边的延长线上,若∠CAE=15°,则AE=cm.9.如图,点E在正方形ABCD边CD上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=7,CE=5,则PQ=.10.如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,若PQ =12,当AQ = 时,△AQD 与△BCP 相似.11.如图,AB =16cm ,AC =12cm ,动点P ,Q 分别以每秒2cm 和1cm 的速度同时开始运动,其中点P 从点A 出发,沿AC 边一直移到点C 为止,点Q 从点B 出发沿BA 边一直移到点A 为止(点P 到达点C 后,点Q 继续运动),当t = 时,△APQ 与△ABC 相似.12.某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在等腰△ABC 中,其中AB =AC ,如图Ⅰ,进行了如下操作:第一步,以点A 为圆心,任意长为半径画弧,分别交BA 的延长线和AC 于点E ,F ,如图Ⅱ;第二步,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点D ,作射线AD ;第三步,以D 为圆心,DA 的长为半径画弧,交射线AE 于点G ; (1)填空;写出∠CAD 与∠GAD 的大小关系为 ; (2)△请判断AD 与BC 的位置关系,并说明理由. △当AB =AC =6,BC =2时,连接DG ,请直接写出AD AG= ;(3)如图△,根据以上条件,点P 为AB 的中点,点M 为射线AD 上的一个动点,连接PM ,PC ,当△CPM =△B 时,求AM 的长.13.如图:在矩形ABCD中,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向C点移动,同时动点Q以1m/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动的时间为t秒(0<t<5).(1)t为多少时,以P、Q、C为顶点的三角形与△ABC相似?(2)在P、Q两点移动过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.课后练习1.如图,将矩形ABCD沿着GE,EC,GF翻折,使得点A,B,D恰好都落在点O处,且点G,O,C在同一条直线上,点E,O,F在另一条直线上.以下结论正确的是()A.△COF∽△CEG B.OC=3OF C.AB:AD=4:3D.GE=√6DF 2.如图,在△ABC中,P为AB上一点,下列四个条件中:①AC2=AP•AB;②AB•CP=AP •CB;③∠APC=∠ACB;④∠ACP=∠B能满足△APC与△ACB相似的条件是()A.①②③B.①②④C.①③④D.②③④3.如图,△ABC∽△DBE,延长AD,交CE于点P,若∠DEB=45°,AC=2√2,DE=√2,BE=1.5,则tan∠DPC=()A .√2B .2C .3+√22D .124.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,则下列结论:(1)sin ∠BAE =12;(2)BE 2=AB •CF ;(3)CD =3CF ;(4)△ABE ∽△AEF ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个5.如图,在四边形ABCD 中,∠BAC =90°,AB =6,AC =8,E 是BC 的中点,AD ∥BC ,AE ∥DC ,EF ⊥CD 于点F .下列结论错误的是( )A .四边形AECD 的周长是20B .△ABC ∽△FEC C .∠B +∠ACD =90°D .EF 的长为2456.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①S△ABM=4S △FDM ;②PN =2√6515;③tan ∠EAF =34;④△PMN ∽△DPE ,正确的是( )A .①②③B .①②④C .①③④D .②③④7.如图,正方形ABCD 中,AB =2√5,点N 为AD 边上一点,连接BN ,作AP ⊥BN 于点P ,点M 为AB 边上一点,且∠PMA =∠PCB ,连接CM .下列结论正确的个数有( ) (1)△P AM ∽△PBC (2)PM ⊥PC ;(3)∠MPB =∠MCB ; (4)若点N 为AD 中点,则S △PCN =6 (5)AN =AMA.5个B.4个C.3个D.2个8.如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,动点D,E分别在AB,CB边上,且BE=√2AD.连接CD,AE相交于点P,连接BP,则△CAD∽△,BP的最小值为.10.在△ABC中,AB=8,BC=16,AP=BP,点Q是BC边上一个动点,当BQ=时,△BPQ与△BAC相似.11.如图,四边形ABCD,CDEF,EFHG是三个正方形,∠2+∠3=.12.如图,在矩形ABCD中,点E,F分别在边AD,DC上,BE⊥EF,AB=6,AE=9,DE=2,则EF的长是.13.如图,小明想测量一棵大树AB的高度,他发现树的影子落在地面和墙上,测得地面上的影子BC的长为5m,墙上的影子CD的长为2m.同一时刻,一根长为1m垂直与地面标杆的影长为0.5m,则大树的高度AB为m.14.小明和小杰去公园游玩,小明给站在观景台边缘的小杰拍照时,发现他的眼睛、凉亭顶端、小杰的头顶三点恰好在一条直线上(如图所示).已知小明的眼睛离地面的距离AB 为1.6米,凉亭的高度CD为6.6米,小明到凉亭的距离BD为12米,凉亭与观景台底部的距离DF为42米,小杰身高为1.8米.那么观景台的高度为米.15如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.16.如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)如图①,在AB 上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求D 、E 两点的坐标;(2)如图②,若OE 上有一动点P (不与O ,E 重合),从点O 出发,以每秒1个单位的速度沿OE 方向向点E 匀速运动,设运动时间为t 秒(0<t <5),过点P 作PM ⊥OE 交OD 于点M ,连接ME ,求当t 为何值时,以点P 、M 、E 为顶点的三角形与△ODA 相似?➢ 冲击A+在正方形ABCD 中,点G 是边AB 上的一个动点,点F 、E 在边BC 上,BF =FE =AG ,且AG ≤12AB ,GF 、DE 的延长线相交于点P .(1)如图1,当点E 与点C 重合时,求∠P 的度数;(2)如图2,当点E 与点C 不重合时,问:(1)中∠P 的度数是否发生变化,若有改变,请求出∠P 的度数,若不变,请说明理由;(3)在(2)的条件下,作DN ⊥GP 于点N ,连接CN 、BP ,取BP 的中点M ,连接MN ,在点G 的运动过程中,求证:MN NC为定值.。
学生做题前请先回答以下问题问题1:相似三角形的判定定理:①________________________________________;②________________________________________;③________________________________________;④_________________________________________________________.问题2:①如果两个图形不仅________,而且__________________________________,那么这样的两个图形叫做位似图形,这个点叫做_________.位似图形上__________________________________等于相似比.②在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是_______,它们的相似比为________.相似三角形的判定、性质一、单选题(共11道,每道9分)1.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定2.如图,在△ABC中,DE∥BC,,则下列结论中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定与性质3.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定4.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,在平行四边形ABCD中,点E在AD边上,连接CE并延长,交BA的延长线于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质6.如图,已知AD为△ABC的角平分线,DE∥AB,交AC于点E,若,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定7.如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,,∠EDF=90°,则DF的长是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,以点O为位似中心,将△ABC扩大到△DEF,若AD=OA,则△ABC与△DEF的面积之比为( )A.1:2B.1:4C.1:5D.1:6答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大为原来的2倍,得到.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(2,4)或(-2,-4)D.(2,4)或(-4,-2)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定10.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定11.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若E是线段AB上的一动点,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定。
相似三角形的判定与性质练习同学们:这份试题难度较大,希望能够通过大家的研究掌握相似三角形的一些基本图形及应用,并从中总结一些解题规律和方法。
一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个2.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.123.(2011•乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.14.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:55.(2011•潼南县)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC 于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④6.(2011•铜仁地区)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A.B.C.D.7.(2011•台湾)如图为一△ABC,其中D、E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠38.(2011•台湾)如图为梯形纸片ABCD,E点在BC上,且∠AEC=∠C=∠D=90°,AD=3,BC=9,CD=8.若以AE为折线,将C折至BE上,使得CD与AB交于F点,则BF长度为何()A.4.5 B.5 C.5.5 D.69.(2011•遂宁)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD②AC2=AD•DB③BC2=BD•BA④CD2=AD•DB.A.1个B.2个C.3个D.4个10.(2011•锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A.3 B.4 C.5 D.611.(2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2 C.3 D.412.(2011•大连)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1 C.D.213.(2011•北京)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.14.(2010•湘西州)如图,△ABC中,DE∥BC,=,DE=2cm,则BC=()A.6cm B.4cm C.8cm D.7cm二.填空题(共12小题)15.(2011•牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC交边AC所在直线于点E,则CE的长为_________.16.(2010•梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为_________.17.(2009•烟台)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DE=CF;③△ADE∽△FDB;④∠BFD=∠CAF其中正确的结论是_________.18.(2009•黄石)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=_________.19.(2008•衢州)如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为_________.20.(2008•南宁)如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB= _________.21.(2007•厦门)如图,在平行四边形ABCD中,AF交DC于E,交BC的延长线于F,∠DAE=20°,∠AED=90°,则∠B=_________度;若=,AD=4厘米,则CF=_________厘米.22.(2007•乌鲁木齐)如图,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=_________.23.(2006•绵阳)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为_________.24.(2006•鄂州)如图,D为△ABC边AB上一点,要使AC2=AD•AB成立则需添加一个条件,这个条件可以是_________.25.(2006•长春)图中x=_________.26.(2004•芜湖)如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_________ cm.三.解答题(共4小题)27.(2011•佛山)如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.28.(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.29.(2011•济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DMP的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.30.(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.答案与评分标准一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质。
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例相似三角形的性质及判定如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得2122ABC A B C BC AH S BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证ABC DEF △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
3.3相似三角形的性质和判定同步练习
一、仔仔细细,记录自信
1.如图1,△OED ∽△OCB ,且OE =6,EC =21,则△OCB 与△OED 的相似比是( )
A .37
B .52
C .85
D .35
2.如图2,点E ,F 分别在矩形ABCD 的边DC ,BC 上,∠AEF =90°,∠AFB =2∠DAE =72°,则图中甲、乙、丙三个三角形中相似的是( )
A .只有甲与乙
B .只有乙与丙
C .只有甲与丙
D .甲与乙与丙
3.如图3,D 是AB 的中点,E 是AC 的中点,则△ADE 与四边形BCED 的面积比是( )
A . 1
B .12
C .13
D .14
4.在相同水压下,口径为4cm 的水管的出水量是口径为1cm 的水管出水量的( )
A .4倍
B .8倍
C .12倍
D .16倍
5.对于下列说法:
(1)相似且有一边为公共边的两个三角形全等;
(2)相似且面积相等的两个三角形全等;
(3)相似且周长相等的两个三角形全等. 其中说法正确的有( )
A .0个
B .1个
C .2个
D .3个6.我国国土面积约为960万平方千米,画在比例尺为1∶1 000万的地图上的面积约是( )
A .960平方千米
B .960平方米
C .960平方分米
D .960平方厘米
二、认认真真,书写快乐
7.已知ABC A B C '''△∽△,且4AB =,6A B ''=,8B C ''=则BC = .
8.两个相似三角形,其中一个三角形的两个内角分别是40°和30°,则另一个三角形的最大内角的度数是 .
9.如图4,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a 、b 满足关系 时,△ABC
∽△CDB.
10.如图5,P是等腰梯形ABCD上底AD上一点,若∠A=∠BPC,则和△ABP相似的三角形有个.
11.相似三角形对应、、的比都等于相似比.
12.相似多边形的周长比等于,面积比等于.
13.把一个三角形三边同时扩大4倍,则周长扩大了倍,面积扩大了倍.
14.两个相似三角形对应中线的比为2
3
,则面积比是.
三、平心静气,展示智慧
15.如图6,已知△ABC∽△DEF,AB=6,BF=2,CE=8,CA=10,DE=15.求线段DF,FC的长.
16.要做两个形状相同的三角形框架,其中一个三角形框架的三边长分别是4,5,6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?想想看,你有几种解决方案?
17.如图7,已知△ABC∽△DEF,AM、DN是中线,试判断△ABM与△DEN是否相似?为什么?
18.如图8,AD是△ABC角平分线,试判断BD AB
DC AC
是否成立?
3.3相似三角形的性质和判定试题练习答案
一、1~6.BDCDC D
二、7.163 8.110 9.2
b BD a
= 10.2 11.高、中线、角平分线 12.相似比,相似比的平方 13.4,16 14.49 三、15.25DF =,2FC =.
16.可选料有三种方案,三角形框架边长分别是①2,2.5,3;②1.6,2,2.4;③43,53,2. 17.相似;可用三边对应成比例或两边对应成比例且夹角相等说明.
18.过点B 作BE AC ∥交AD 延长线于点E ,则可得BDE CDA △∽△, 从而BD BE DC AC =,然后再由E DAC BAD ==∠∠∠,得BE AB =,故BD AB DC AC
=成立.。