初中数学圆心角和圆周角之欧阳光明创编
- 格式:doc
- 大小:508.51 KB
- 文档页数:5
九年级上册数学教案《圆周角与圆心角的关系》教材分析《圆周角》这节课是人教版九年级上册第二十四章第一节第四部分的内容,是在学生学习了圆、弧、弦、圆心角等概念和相关知识的基础上出现的。
圆周角与圆心角的关系,在圆的有关说理、作图、计算中,应用比较广泛。
通过对圆周角定理的探讨,培养学生严谨的思维品质。
同时,教会学生从特殊到一般的分类讨论的思维方法。
因此,本节课无论在知识上,还是方法上,都起着十分重要的作用。
所以这一节课既是对前面所学知识的延续,又是对后面研究圆与其它平面图形的桥梁。
学情分析初三学生已经具备一定的独立思考和探索能力,学生既能在探索过程中条理清晰地阐述自己的观点,又能在倾听别人意见的过程中,逐渐完善自己的想法。
因此,本节课设计了一系列探究活动,给学生提供探索与交流的空间,体现知识的形成过程。
由于学生有了自主意识及参与度的提高,因此,这节课可以给学生充分的时间讨论交流。
教学目标1、理解圆周角的概念,掌握圆周角的两个特征。
2、经历探索圆周角与圆心角及其对弧关系的过程,了解并证明圆周角定理,发展合情推理和演绎推理的能力。
3、能用圆周角定理,进行计算及证明。
教学重点探索圆周角和圆心角的关系。
教学难点感悟圆周角和圆心角定理,证明过程中的分类、转化的数学思想。
教学方法讲授法、演示法、讨论法、练习法教学过程一、创设情境如图,运动员在球门前画了一个圆,进行无人防守的射门训练。
点B对球门AC的张角与点D对球门AC的张角,哪个张角大?师:要研究这个问题,我们先研究∠ABC、∠ADC、∠AEC。
观察这几个角,你发现了什么?学生经过观察,发现几个角的顶点都在圆上,角两边都与圆相交。
圆周角定义:顶点在圆上,两边分别与圆还有一个交点,像这样的角,叫做圆周角。
二、探究新知如图,连接AO,BO,得到圆心角∠AOB。
可以发现,∠ACB与∠AOB对着同̂,分别测量图中AB̂所对的圆周角∠ACB和圆心角∠AOB的度数,它们一条弧AB之间存在什么关系呢?我们来研究这个问题。
contents•圆心角和圆周角的基本概念
•圆心角和圆周角的性质
目录
•圆心角和圆周角的计算与应用
•圆心角和圆周角在高级数学和物理学中
的拓展
定义
圆心角的度数等于所对弧的度数。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
性质
应用
定义
性质应用
圆心角与圆周角的关系
可加性
半径无关性
等于圆心角的一半可变性
与弦切角的关系
定义和性质理解01
弧度和角度的转换02
应用公式进行计算
03
圆心角与正弦、余弦函数圆周角与正切函数
圆心角和圆周角在三角函数中的拓展
圆心角与物体运动轨迹
在物理学中,物体的运动轨迹往往与圆心角有关,例如,物体做匀速圆周运动时,其运动轨迹就是一个圆,圆心角的大小可以用来描述物体运动的角度范围。
圆周角与向心加速度
圆周角还与向心加速度有密切关系,向心加速度是物体做圆周运动时指向圆心的加速度,其大小与圆周角的变化率成正比。
因此,通过研究圆周角的变化规律,可以更好地理解向心加速度的物理意义。
圆心角和圆周角在物理学中的拓展。
圆周角和圆心角的关系 - 北师大版九年级数学下册教案一、知识目标1.记住圆周角和圆心角的定义,知道它们的度数关系。
2.熟悉相关概念和公式,能够灵活运用。
3.理解圆周角和圆心角的概念对于解题的重要性。
二、教学重点1.记住圆周角和圆心角的定义,明确它们的度数关系。
2.了解使用相关概念和公式解题的方法。
3.掌握圆周角和圆心角的应用技巧。
三、教学难点1.掌握圆周角和圆心角的应用技巧。
2.在实际应用中能够识别圆周角和圆心角。
四、教学过程1. 导入环节老师可以出示两个圆形图片,一个是圆周角的例子,一个是圆心角的例子,让学生自主分析其定义和特点,提出不同于直角角度的新角度,并引出本节课的主旨:圆周角和圆心角的关系。
2. 讲解圆周角和圆心角的概念1.圆周角:以圆心为端点,它所对的弧所对应的角度称为圆周角。
常用的表示方法为:θ=弧长/圆周长×360°。
2.圆心角:以圆的圆心为端点,它所对的弧所对应的角度称为圆心角。
常用的表示方法为:θ=弧长/半径。
3. 圆周角和圆心角的度数关系1.当圆弧等于圆周时,圆周角为360°,圆心角为2π。
2.当其他弧对应的圆周角大小为x°时,圆心角的大小为2x°。
3.当弧对应的圆周角大小为x°,半径为r时,弧长为x/360×2πr。
4. 综合练习1.练习1:在相同半径的圆中,一圆周角为120度,求另一圆弧所对的圆心角的大小。
2.练习2:半径为3cm的圆上的一弧所对的圆周角的大小为60度,求这个弧的长度。
3.练习3:在相同圆周上,圆心角比圆周角小20度,求这个圆弧对应的圆心角和圆周角的大小。
五、教学体会本节课主要介绍了圆周角和圆心角的概念和度数关系,通过逐一分析演示,使学生更加深刻地了解到各种情形下圆周角和圆心角的度数大小,并通过解题练习加深了对相关知识的掌握。
在教学的过程中,应适时提醒学生注重归纳总结,加强题目训练,以提高学生对知识点的理解和认识。
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。
通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。
教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。
二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。
但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。
此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。
三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。
四. 教学重难点1.教学重点:圆周角定理的掌握和运用。
2.教学难点:圆周角定理的证明和理解。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。
3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。
2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。
3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。
2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。
通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。
3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
2024年《圆周角和圆心角的关系》说课稿《圆周角和圆心角的关系》说课稿1“圆周角和圆心角的关系”是义务教育课程标准实验教科书北师大版九年级数学下册第三章第三节的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。
1、本节知识点(1)圆周角的概念(2)圆周角的定理2、教学目标(1)理解并掌握圆周角的概念;(2)掌握圆周角定理,并能熟练地运用它们进行论证和计算;(3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。
教学重点:圆周角定理。
教学难点:认识圆周角定理需要分三种情况逐一证明的必要性。
(重点与难点的突破将在教学过程中详细说明)二、本节教材安排本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。
今天我向大家汇报的是第一课时的设计。
三、教学方法数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。
本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。
四、教学步骤(一)、旧知回放,探索新知(圆周角的概念的突破)1、出示课件,演示将圆心角的顶点由圆心拖至圆上,请同学们仿照圆心角的概念给形成的新角起名字,学生很容易的就会命名为圆周角。
2、引导学生进行讨论,规范圆周角的概念。
(设计意:让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能、分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义。
)特别说明:本节的引入我采用了动态演示的方法,从学生已知的圆心角出发,引申到这节课要学的圆周角,便于学生在已有的知识基础上掌握所学,符合学生的认知规律.本节教材中给出的引例是一个生动而实际的例子,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,它要引出的是第二课时的内容.本着活用教材原则,在深入挖掘教材之后,我觉得这个例子放在第一课时并不太合适.3、巩固练习,看谁最棒(请同学们判断各形的角是否是圆周角,并说明理由。
北师大版九年级数学下册:第三章 3.4.2《圆周角和圆心角的关系》精品说课稿一. 教材分析北师大版九年级数学下册第三章《圆周角和圆心角的关系》的内容,是在学生已经掌握了圆的基本概念、圆的度量等知识的基础上进行教授的。
这一节内容主要介绍了圆周角和圆心角的关系,即圆周角等于其所对圆心角的一半。
这是圆的重要性质之一,对于学生理解圆的性质和应用具有重要的意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的基本概念和度量知识有一定的了解。
但是,对于圆周角和圆心角的关系的理解,可能还需要进一步的引导和解释。
因此,在教学过程中,我将会注重学生的参与和实践,通过举例和练习,让学生深入理解圆周角和圆心角的关系。
三. 说教学目标1.知识与技能:学生能够理解圆周角和圆心角的关系,能够运用这一性质解决相关问题。
2.过程与方法:学生通过观察、实践和思考,培养观察能力和逻辑思维能力。
3.情感态度与价值观:学生培养对数学的兴趣,提高自信心,培养合作和探究的精神。
四. 说教学重难点1.教学重点:学生能够理解圆周角和圆心角的关系,能够运用这一性质解决相关问题。
2.教学难点:学生能够理解和证明圆周角等于其所对圆心角的一半。
五. 说教学方法与手段在教学过程中,我将采用问题驱动法和案例教学法。
通过提问和举例,引导学生思考和探索圆周角和圆心角的关系。
同时,我会利用多媒体教学手段,如PPT 和动画,来辅助解释和展示圆周角和圆心角的关系。
六. 说教学过程1.导入:通过提问和回顾,引导学生回顾已知的圆的知识,为新课的学习做好铺垫。
2.讲解:详细讲解圆周角和圆心角的关系,通过图示和实例,让学生直观地理解这一性质。
3.练习:给出一些练习题,让学生运用圆周角和圆心角的关系解决问题,巩固所学知识。
4.拓展:给出一些拓展题,让学生进一步思考和探索圆周角和圆心角的关系的应用。
5.小结:对本节课的内容进行总结,强调圆周角和圆心角的关系的重要性。
2.2。
2 圆周角第1课时圆周角定理与推论11.理解圆周角的概念,学会识别圆周角;2.在实际操作中探索圆的性质,了解圆周角与圆心角的关系,并能应用其进行简单的计算与证明;(重点)3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍.比赛中如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角的概念下列图形中的角是圆周角的是( )解析:观察可以发现只有选项B 中的角的顶点在圆周上,且两边都和圆相交.所以它是圆周角.故选B。
变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:圆周角定理与推论1【类型一】利用圆周角定理求角如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( )A.25°B.30°C.35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC=130°,∠AOB=180°,∴∠BOC=50°,∴∠D=25°。
故选A.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】利用圆周角定理的推论1求角(2015·莆田中考)如图,在⊙O中,错误!=错误!,∠AOB=50°,则∠ADC的度数是( )A.50° B.40°C.30° D.25°解析:∵连接CO,在⊙O中,错误!=错误!,∴∠AOC=∠AOB。
∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=错误!∠AOC=25°.故选D.方法总结:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第6题三、板书设计教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
初三下学期数学圆周角和圆心角的关系知识点精讲知识点总结圆心角与圆周角:圆心角是指顶点在圆心的角,而圆周角则指顶点在圆上的角,二者注意区分。
重要结论:①同弧(同弦)所对的圆周角是圆心角的一半(即½)②直径所对的圆周角是直角,即90º解题思路:结合垂径定理、圆心角和圆周角的转化关系,加上以前学过的直角三角形性质、三角形的外角性质和角平分线的性质,去解决具体题目,注意分析过程中灵活运用相关知识点。
要点1:圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2圆周角定理:一条弧所对的圆周角等于它所对圆心角度数的一半。
3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上:②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上:圆心在圆周角的内部:圆心在圆周角的外部,(如下图)要点2:圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD是00的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.习题讲析练习题:图文导学教学设计圆周角和圆心角的关系一、教材分析1、教材的地位和作用本课是在学习了圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是圆这章的重点内容之一。
2、依学情定目标我们面对的是已具备一定知识储备和一定认知能力的个性鲜明的学生,他们有较强的自我发展意识,根据新课程标准的学段目标要求,结合学生实际情况制订以下三个方面的教学目标:1)知识目标:了解圆周角和圆心角的关系,有机渗透由特殊到一般思想、分类思想、化归思想。
初中数学《圆心角和圆周角》的教学设计
这是一篇由网络搜集整理的关于初中数学《圆心角和圆周角》的教学设计的文档,希望对你能有帮助。
二、教学目标
1。
经历探索圆心角的性质的过程。
2。
理解圆心角的概念及相关的性质。
三、教学重点和难点
重点:经历探索圆心角性质的过程。
难点:圆心角性质的应用。
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程设计
(一)、新授
定点在圆心的角叫作圆心角。
在幻灯片上展示圆心角,并作详细说明
(二)、一起探究
依照课本上,让学生探索圆心角、弦、弧的关系,得出结论:
在同圆或等圆中,相等的'圆心角所对的弦相等,所对的弧也相等;相等的弦或相等的弧所对的圆心角相等。
在多媒体上,利用旋转讲解这部分知识。
例;如图,在⊙O中,已知,请说明AC=BD。
分析:此题是在一个圆中,由弧相等,得出弦相等,而圆心角的性质把这两者结合在一起,我们要通过圆心角来建立两者的关系。
(三)、小结
圆心角的性质把弧、弦、圆心角三者结合在一起,使三者互相依存,在以后的做题中,要注意利用三者间的这种关系。
七、练习设计
P9习题1、2、3。
八、教学后记。
圆心角和圆周角及之间的关系
欧阳光明(2021.03.07)
内容(课题):圆心角和圆周角及之间的关系
教学目的:1、了解圆周角的概念。
2、理解圆周角定理的证明。
3、通过圆周角定理的证明,培养学生对数学的逻辑严密性的体验,树立正确的数学学习观。
4、培养学生的合作交流意识和数学交流能力。
重难点(考点)分析:
要注意分类讨论和有关圆的问题的多解性,同时结合阅读理解,条件开放,结论开放的探索题型,圆周角的概念和圆周角定理的证明,理解圆周角定理的证明中的分类证明思想。
教学过程:
一、圆周角与圆心角的定义
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
注意圆周角定义的两个基本特征:
(1)顶点在圆上;
(2)两边都和圆相交。
圆心角:顶点在圆心的角。
利用两个错误的图形来强调圆周角定义的两个基本特征:
练习:判断下列各图形中的是不是圆周角,并说明理由.
二、看一看
A
O
B C
有没有圆周角?∠BAC 有没有圆心角?∠BOC
它们有什么共同的特点?它们都对着同一条弧BC
三、猜想归纳:请画出弧BC所对的圆周角. 若按圆心O与这个圆周角的位置关系来分类,我们可以分成几类?圆
周角的度数与什么有关系?动手量一量∠BOC与∠BAC有何数量关系?
A
B C
O
A
B C
O
四、证明圆心角与圆周角之间的关系
1、首先考虑一种特殊情况:
当圆心(O)在圆周角(∠BAC)的一边(AB)上时,圆周角∠BAC与圆心角∠BOC的大小关系.
∵∠BOC是△ACO的外角
∴∠BOC=∠C+∠A
∵OA=OC,
∴∠A=∠C
∴∠BOC=2∠A
即∠BAC = 1/2∠BOC
2、如果圆心不在圆周角的一边上,结果会怎样?
当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?
思考:能否转化成1中的情况?
证明:过点A作直径AD.由1可得:
∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD
∴∠BAC = 1/2∠BOC.
3、当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?
思考:同样是否能转化成1中的情况?
过点B作直径AD.由1可得:
8.△ABC 中,∠B=90°,以BC 为直径作圆交AC 于E ,若BC=12,AB=12,则的度数为( )
(A )60° (B )80° (C )100° (D ))120°
9.如图,△ABC 是⊙O 的内接等边三角形,D 是AB 上一点,AB 与CD 交于E 点,则图中60°的角共有( )个.
(A )3 (B )4 (C )5 (D )6
10.如图,△ABC 内接于⊙O ,∠OBC=25°,则∠A 的度数为( )
(A )70° (B )65° (C )60° (D ))50°
二、填空题:
1.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______
度.
C
B
A
O D
C
B
A
O
E
D C
B
A
O
(1) (2) (3)
2.如图5,AB 是⊙O 的直径,BC BD =,∠A=25°,则∠BOD 的度数为________.
3.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.
三、解答题:
1.如图,已知AB 是O 的直径,AC 是弦,过点O 作OD AC ⊥于D ,连结BC .
(1)求证:12OD BC =; (2)若40BAC =∠,求ABC 的度数. 2.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.
30︒
D
C
B
A
O
3.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.
A
B
C D
O (图1)
D
C
B
A
O
四、能力提升:
如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2.
(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由.(2)如图3,若两弦AC、BD的延长线交于P点,则AB2=.参照(1)填写相应结论,并证明你填写结论的正确性.
学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:________
教学总结:。