网络最大流
- 格式:ppt
- 大小:669.50 KB
- 文档页数:30
最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。
一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。
网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。
源点是流量的起点,汇点是流量的终点。
在网络中,还可能存在其他节点和边。
二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。
该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。
三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。
该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。
但是在某些特殊情况下仍然可能需要指数级时间复杂度。
最大流的概念最大流(Maximum Flow)是指在一个有向图中,给每条边一个容量限制,然后寻找一条从源点到汇点的路径,使得路径上的每条边的流量都不超过其容量限制的最大值。
最大流问题是网络流理论中的一种经典问题,具有广泛的应用领域,如网络优化、流量分配、资源调度等。
最大流问题可以用图论中的图来进行模型表示,其中图中的节点表示流经的位置,边表示流量通路,每条边还有一个容量值,表示该边所能承载的最大流量。
图中通常包括一个源点(Source)和一个汇点(Sink),各个节点与源点和汇点之间的连接关系构成了一个流量网络。
每个节点上的流量是指通过该节点的流量总和,而边上的流量是指该边上的实际流量。
最大流问题的求解可以采用不同的算法,其中最常见的是Ford-Fulkerson算法和Edmonds-Karp算法。
下面将对这两种算法进行详细介绍。
1. Ford-Fulkerson算法Ford-Fulkerson算法是最大流问题的经典算法,它的思想是不断寻找增广路径,并通过增加该路径上各边的流量来增加整个流量网络的流量。
算法的基本步骤如下:(1) 初始化流量网络的流量为0。
(2) 通过任意的路径查找算法(如深度优先搜索)找到一条从源点到汇点的增广路径。
(3) 在该增广路径上增加流量的值为该路径上残余容量的最小值。
(4) 更新整个流量网络中各边的残余容量和反向边的流量。
(5) 重复步骤2至4,直到无法找到增广路径为止。
2. Edmonds-Karp算法Edmonds-Karp算法是Ford-Fulkerson算法的一种改进,它通过使用广度优先搜索来寻找增广路径,使得算法的时间复杂度优于Ford-Fulkerson算法。
算法的具体步骤如下:(1) 初始化流量网络的流量为0。
(2) 通过广度优先搜索查找一条从源点到汇点的最短增广路径。
(3) 在该增广路径上增加流量的值为该路径上残余容量的最小值。
(4) 更新整个流量网络中各边的残余容量和反向边的流量。
⽹络流基础-最⼤流最⼩割定理
最⼤流最⼩割定理,指⽹络流的最⼤流等于其最⼩割。
最⼤流指符合三个性质的前提下,从S到T能流过的最⼤流量。
最⼩割指符合割的定义,最⼩的割容量。
求最⼤流:
不断寻找增⼴路,计算能增加的最⼩流量,然后增加。
找到⼀条增光路,最多能流过2,则:
找到第⼆条路径:
最后还剩a-c-e⼀条,则可计算出最⼤流量为4。
但遇到以下情况,且第⼀条路径为a-b-c-d时,就不⾏了:
此时需要增加反向路径,即当减去增⼴路时,反向加上减去的流量,提供后悔的选择:
这样,当考虑a-c-b-d时,可以对冲掉b-c的流量。
证明:
定理⼀:对于任⼀割和任⼀流,流量等于正向割边流量减去反向割边流量。
即f = f c+ - f c-,其中c+代表正向割边流量。
推论:任⼀割容量必定⼤于等于任⼀流量,由于:C+ > f c+ > f c+ - f c- > f。
则如果存在某流量和某割,则此流量必定为最⼤流,此割必定为最⼩割。
当我们计算出最⼤流时,不妨思考下此时的残留⽹络:
此时残留⽹络不存在增⼴路,即不存在⼀条能从S到T的路径。
此时残留⽹络中,我们把S能到达的节点记为s'集,能到达T的节点记为t’集,则s'和t'构成割集。
在残留⽹络中,流量指容量为0的边(满流),⽽这些边⼜是割边,所以流量和等于割的容量和。
⽐如对于:
其⼀个残留⽹络为:
其中两条虚线边为满流的边,也是割边。
最大流问题标号法例题详解最大流问题标号法例题详解本文以一道标号法求解最大流问题的例题胶加以详细讲解,帮助读者了解其原理及运算步骤。
题目如下:给定一个网络结构如下:s (源点) 0----1----2----3----4---- t (汇点)a 25 10 12 15 20其中 s 是源点,t是汇点,aij(i,j=0,1,2,3,4)是每条弧的容量,求整个网络的最大流量。
解:1、设置标号:在最大流问题中,为了求解最大流,最常用的方法是标号法。
首先,要设置各结点标号,因为本题中有5个结点,s源点的标号为0,t汇点标号为4,其他结点即1,2,3依次标号,标号的设定不仅便于求解,而且可以在初始化的时候使用。
2、初始化标号:初始化标号即将各结点初始化为两个空集合{},即各结点的访问和未访问标号都是空集合,即无访问的结点标号为{},访问过的结点标号也为{}。
3、依据标号法,从源点(s=0)计算,得出每条弧的剩余容量Cij,具体推导如下:源点0 1 2 3 41 0 25 10 12 152 0 0 10 7 103 0 0 0 8 104 0 0 0 0 20其中:Cij=aij-fij (i,j=0,1,2,3,4)其中,aij 为每条弧的容量,fij 为每条弧的流量,在初始情况下,fij=0,故Cij=aij。
4、找增广路径:从源点s开始,用深度优先搜索法查找从s到t的增广路径,具体步骤如下:设置一个数组P[i]用以记录路径,P[i]表示从s到i节点所经过的上一个结点,先从源点s开始,P[0]=-1,然后查找s出发可以到达的结点,若Cij>0,则有路可达,将P[j]=i(j为s出发可达的结点),接着查找j出发可以到达的结点(该结点未被访问过)若Cjk>0,则有路可达,把P[k]=j,以此类推,直到找到P[t]=-1,即从s到t 的一条增广路径找到,这条增广路径的路径上的容量称为Cmin,它是该增广路径上各结点之间的容量最小值。
最大流算法的实施步骤1. 算法介绍最大流算法是解决网络流问题的一种常用算法。
给定一个网络图,其中包含源点s和汇点t,以及带有容量限制的边。
最大流算法的目标是找到从源点s到汇点t的最大流量。
2. 算法步骤最大流算法通常采用增广路径的方法来逐步增加网络的流量,直至无法再找到增广路径为止。
下面是最大流算法的具体步骤:步骤 1:初始化1.创建一个残余网络图,用于记录每条边的剩余容量。
2.初始化所有边的流量为0。
步骤 2:寻找增广路径1.在残余网络图中使用广度优先搜索(BFS)或深度优先搜索(DFS)寻找从源点s到汇点t的增广路径。
2.如果找到增广路径,则记录该路径上的最小剩余容量(即该路径上的最小容量)。
步骤 3:更新流量1.将步骤2中找到的路径上的最小剩余容量,加到该路径上的每条边的流量中。
2.同时更新残余网络图中该路径上每条边的剩余容量。
步骤 4:重复步骤2和31.重复步骤2和3,直到无法再找到增广路径。
2.此时,经过网络的流量即为最大流量。
3. 算法的示例假设有以下网络图作为示例:s ---4---> 1 ---2---> 3 --3--> t| / \\ / |5 / \\ / 6| / \\ / |v v v v v2 1 43 14 / v| 2| / v |2 2 | 2| t |+-------- 5-----+------------+按照上述步骤,我们来计算最大流量:1.初始化残余网络图和边的流量。
s ---4/0---> 1 ---2/0---> 3 --3/0--> t| / \\ / |5/0 / \\ / 6/0| / \\ / |v v v v v2/0 1/0 4/0 3/0 1/0| / \\ | |4/0 / v | 2/0| / v |2/0 t |+-------- 5/0 -----+------------+2.使用BFS寻找增广路径:s -> 1 -> 3 -> t,最小剩余容量为2。
求解最大流问题的算法和模型最大流问题是图论中的一个基本问题,涉及到网络流的计算和优化。
在实际应用中,最大流问题的求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic算法、最小割定理等。
本文将从这些方面进行论述。
1. 增广路径算法增广路径算法是求解最大流问题的经典算法,其基本思想是不断地寻找增广路径,通过增加路径上的流量来增加整个网络的流量。
具体来说,首先通过深度优先搜索或广度优先搜索找到一条从源点到汇点的增广路径,然后确定路径上的最小流量d,将当前流量增加d,将反向边的流量减少d,同时计算当前网络的流量。
2. Ford-Fulkerson算法Ford-Fulkerson算法是一种经典的增广路径算法,其基本理念与增广路径算法相同,但采用不同的策略来确定增广路径。
具体来说,Ford-Fulkerson算法采用贪心策略,在每次迭代中选择路径上的最小容量,从而确定增加的流量。
此外,Ford-Fulkerson算法还引入了残量图的概念,用于计算增广路径的容量。
3. Dinic算法Dinic算法是一种高效的增广路径算法,其主要优点是采用了分层图的策略来确定增广路径,使得每次迭代的搜索范围大为缩小。
具体来说,Dinic算法首先利用BFS算法确定每个节点的分层,然后在分层图上通过DFS算法查找增广路径,在路径上增加流量,更新分层图,重复此过程直至求解最大流。
4. 最小割定理最小割定理是求解最大流问题的重要定理,其核心思想是将网络分成两个不相交部分,并将其最小的割称为最小割。
最小割定理指出,在任意网络中,最大流等于最小割。
因此,求解最大流可以转化为求最小割问题,即在网络中寻找一组最小割,使得所有的割中容量最小的一组割。
总之,求解最大流问题是图论中的一个重要问题,其求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic 算法、最小割定理等。
在实际应用中,不同情况下可能需要采用不同的算法和模型来求解,需要灵活应用。