第二章 线性规划解析
- 格式:ppt
- 大小:9.43 MB
- 文档页数:57
第二章线性规划教学目的和要求:目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。
要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了解图解法。
重点:线性规划标准型,解的概念,单纯形法,人工变量法。
难点:线性规划基本定理,单纯形法。
教学方法:讲授法,习题法。
学时分配:12学时 作业安排:见教材P 38.线性规划是运筹学的一个重要分支。
1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。
1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。
此后,线性规划理论日趋成熟,应用也日益广泛和深入。
第一节线性规划问题一、问题的提出在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。
例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。
A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。
问如何安排生产计划,才能使所获总利润最大?解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800,X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3);以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦6504X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700X j ≧0 (j=1,2,3)例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。
运筹学第二章习题和答案运筹学是一门研究如何通过数学模型和方法来优化决策和资源分配的学科。
在运筹学的学习过程中,习题是非常重要的一部分。
通过做习题,我们可以巩固理论知识,提高解决问题的能力。
本文将针对运筹学第二章的习题进行讨论和答案解析。
第二章主要介绍了线性规划的基本概念和方法。
线性规划是一种常见的优化问题,其数学模型可以表示为最大化或最小化一个线性目标函数的同时满足一组线性约束条件。
在解决线性规划问题时,我们常常使用单纯形法或者内点法等方法。
习题2.1:一个公司生产两种产品A和B,每个单位A产品的利润为3万元,每个单位B产品的利润为4万元。
公司的生产能力为每天生产A产品100个单位,B产品80个单位。
产品A和B分别需要2个和3个单位的原材料X和Y。
而公司每天可用的原材料X和Y分别为180个单位和210个单位。
问该公司应如何安排生产,才能使利润最大化?解析:首先,我们需要定义决策变量。
假设公司每天生产A产品x个单位,B 产品y个单位。
则我们的目标是最大化利润,即最大化目标函数Z=3x+4y。
同时,我们需要满足生产能力和原材料约束条件。
生产能力约束条件为x≤100,y≤80。
原材料约束条件为2x+3y≤180,2x+3y≤210。
通过绘制约束条件的图形,我们可以得到可行解的区域。
在该区域内,我们需要找到目标函数Z=3x+4y的最大值点。
通过计算,我们可以得到最大利润为320万元,此时生产100个单位的A产品和60个单位的B产品。
习题2.2:某工厂生产两种产品,产品A和产品B。
产品A的生产需要1个单位的原材料X和2个单位的原材料Y,产品B的生产需要2个单位的原材料X 和1个单位的原材料Y。
每个单位的产品A的利润为3万元,每个单位的产品B的利润为4万元。
工厂每天可用的原材料X和Y分别为10个单位和12个单位。
问该工厂应如何安排生产,才能使利润最大化?解析:同样地,我们首先定义决策变量。
假设工厂每天生产A产品x个单位,B产品y个单位。