分式函数的图像及性质
- 格式:doc
- 大小:1.20 MB
- 文档页数:14
有理分式函数的图象及性质【知识要点】1.函数(0,)ax b y c ad bc cx d+=≠≠+(1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c-∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c- (5)奇偶性:当0a d ==时为奇函数。
(62.函数(0,0)b yax a b x =+>>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。
3.函数(0,0)b y ax a b=+><的图象和性质:【例题精讲】1.函数11+-=x y 的图象是 ( )A B C D2.函数23(1)1x y x x +=<-的反函数是 ( ) 3333.(2) . (2) . (1) .(1)2222x x x x A y x B y x C y x D y x x x x x ++++=<=≠=<=≠---- 3.若函数2()x f x x a+=+的图象关于直线y x =对称,则a 的值是 ( ) . 1 . 1 . 2 .2A B C D --4.若函数21()x f x x a-=+存在反函数,则实数a 的取值范围为 ( ) 11. 1 . 1 . .22A aB aC aD a ≠-≠≠≠- 5.不等式14x x>的解集为 ( ) 1111111. (,0)(,) . (-,)(,) . (,0)(0,,+) .(,0)(0,)2222222A B C D -+∞∞-+∞-∞-6.已知函数2()ax b f x x c+=+的图象如图所示,则,,a b c 的大小关系为 ( ) . . . .A a b c B a c b C b a c Db c a >>>>>>>>7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。
分 式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式函数的图像与性质1、分式函数的概念形如22(,,,,,)axbx c y a b c d e fR dx ex f ++=∈++的函数称为分式函数。
如221x y x x +=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,23y x =+等。
※ 学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞U ; 对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定?【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c=-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
内部讲义分式函数分式函数【知识要点归纳】一、分式函数的定义二、反比例函数与对勾函数知识总结三、分式函数的类型及求解方法1.一次分式函数:2.二次分式函数(1)二次常数=)(x f(2)二次二次=)(x f(3)一次二次=)(x f(4)二次一次=)(x f【经典例题】例1:函数[]31,3,1(1335)(≠−∈−+=x x x x x f 的值域是例2:求函数232−+=x x y ,]8,3[∈x 的值域。
例3:函数x xee y ++=234的值域是_____________________。
例4:求函数]5,3[,321)(2−∈−−=x x x x f 的值域。
例5:求函数]0,1[,5444)(22−∈++++=x x x x x x f 的值域。
例6:求函数]2,0[,3454)(22∈++++=x x x x x x f 的值域。
例7:求下列函数的最大值:1542()454y x x x =−+<−例8:若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 A .1[,3]2B .10[2,3C .510[,]23D .10[3,]3例9:求),1[,)1(613842+∞∈+++=x x x x y 的最小值?例10:求函数),1[,42)(2+∞∈++=x x x x x f 的值域.例11:求值域22(2)1x y x x x +=>−++【课堂练习】1.已知函数352)(−+=x x x f (1)指出)(x f 的定义域和值域(2)指出)(x f 的增减区间2.函数2211x y x +=−的值域是_______________.3.函数1122++−+=x x x x y 的值域是4.42()9,0,___________.5(]f x x x x =+∈函数的值域是5.设x >0, 若1a x x+> 恒成立, 则实数a 的取值范围是( ) A. 1,4(−∞− B. 1,04()− C. 1,4()+∞ D.1,16()+∞ 6.(2010重庆文12)已知0t >,则函数241t t y t−+=的最小值为____________ 7.函数4522++=x x y 的最小值为8.函数1222+++=x x x y 的值域是【课堂练习】参考答案1、(1)2,3≠≠y x (2)无单调增,单调减区间为),3(),3,(+∞−∞2、)1,(),1[−−∞∪+∞ 解:.12111222−−−=−+=x x x y ,设0.,1212≥−−−==t t y x t 则,画出图像即得答案。
分式方程的性质
分式方程是一种微积分研究中非常重要的概念,它可以表达出一些和微积分有关的问题。
分式方程可以定义为方程的一种,它包含两个或者更多的分式,其中可以有未知量。
在微积分中,分式方程可以用来描述函数和求出解。
首先,分式方程可以用来描述函数。
在分式方程中,所有分子和分母之和都是某一常量,所以它可以用来表示函数的一般解析式。
例如,如果分子是a和b的和,分母是c的和,那么可以用分式方程表示函数f(x)=a+bx/c。
其次,分式方程有助于求解,它有助于我们求出分式的零点和极值。
求解分式方程的第一步是将它化为有理函数(即上面说的出现在分式方程中的函数),这样可以用求有理函数零点和极值的方法求出分式方程的解。
例如,当分式方程为f(x)=3x+4x/8时,把它化为函数f(x)=2x/8,然后可以求出零点x=-4。
此外,分式方程还有助于求函数的极限。
在微积分中,分式方程可以用来求出某个函数的定义域以及极限值。
举个例子,对于f(x)=3x-6x/8,它的定义域就是[-∞,+∞],极限值就是0。
最后说说分式法分解。
分式法分解是一个非常有用的分析技术,它可以把一个分式分解为一系列更容易求得结果的更简单的分式。
分式法分解有助于简化问题,因为结果和原测试分式相等,所以它可以帮助人们把一个看起来很复杂的分式简化至更容易解决的问题。
总而言之,分式方程是微积分研究中非常重要的概念,它可以用来描述函数和求出解,还可以用于求取函数的极限和极值,分式法分解也有助于简化问题。
学习是件快乐的事情分式函数的图像与性质形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。
如221x y x x+=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,23y x =+等。
二、新课导学 ※ 学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x=的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下:单调减区间:(,1),(1,)-∞+∞;值域:(,2)(2,)-∞+∞U ; 对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,数学有时候是折磨人的工具需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
高一数学选修课系列讲座(一)-----------------分式函数的图像与性质一、概念提出1、分式函数的概念形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。
如221x y x x +=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x x y +=-,sin 23sin 3x y x +=-,123x y x -+=+等。
二、学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
小结:(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质: (1)定义域: ;(2)值域:;(3)单调性:单调区间为;(4)渐近线及对称中心:渐近线为直线,对称中心为点;(5)奇偶性:当时为奇函数; (6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
小结:分式函数(,0)by ax a b x=+>的图像与性质: (1)定义域:;(2)值域:;(3)奇偶性:;(4)单调性:在区间上是增函数,在区间上为减函数;(5)渐近线:以轴和直线为渐近线; (6)图象:如右图所示例3、根据y x =与1y x =的函数图像,绘制函数1y x x=-的图像,并结合函数图像指出函数具有的性质。
结合刚才的两个例子,思考1y x x =--与1y x x=-的图像又是怎样的呢? 思考12+y x x =与23y x x =-的图像是怎样的呢?(,,0)by ax a b R ab x =+∈≠的图像呢?小结:(,,0)by ax a b R ab x=+∈≠的图像如下:(i )(0,b y ax a b x =+>>(0,0)b y ax a b =+><(iii) (0,0)by ax a b x=+<>(iv) (0,0)by ax a b x=+<<(,,0)by ax a b R ab x=+∈≠的单调性、值域、奇偶性等,可以结合函数的图像研究。
探究任务二:函数22(,,,,,)ax bx cy a b c d e f R dx ex f++=∈++的图像与性质 问题3:例4 函数2211x x y x ++=+的图像是怎样的?单调区间如何?思考:函数2121x y x x +=++的性质如何呢?单调区间是怎样的呢? 小结:对于分式函数22(,,,,,)ax bx cy a b c d e f R dx ex f++=∈++而言,分子次数高于分母时,可以采用问题3中的方法,将函数表达式写成部分分式,再结合函数的图像的平移,由熟悉的四类分式函数的图像得到新的函数图像,再结合函数的图像研究函数的性质。
对于分子的次数低于分母的次数的时候,可以考虑分子分母同时除以分子(确保分子不为0),再着力研究分母的性质与图像,间接地研究整个函数的性质。
如:22111(1)221212(1)311x y x x x x x x x x +===≠-++++++-++巩固练习:1、若,,3,x y R xy y +∈+=则x y +的最小值是;2、函数234xyx =+的值域是;3、已知[)221(),1,ax x f x x x--=∈+∞单调递减,则实数a 的取值围是; 4、不等式20x a x-->的在[]2,1有实数解,则实数a 的取值围是; 5、不等式20x a x-->的在[]2,1恒成立,则实数a 的取值围是; 6、已知()af x x x=-+在区间[2,3)单调递减,求a 的取值围是; 7、函数221x xy x x -=-+的值域是8、定义在R 上函数()f x ,集合{A a a =为实数,且对于任意},()x R f x a ∈≥恒成立,且存在常数m A ∈,对于任意n A ∈,均有m n ≥成立,则称m 为函数()f x 在R 上的“定下界”.若21()12x xf x -=+,则函数()f x 在R 上的“定下界”m =__________.9、设(),[0,+)1af x x x x =+∈∞+. (1)当4a =时,求()f x 的最小值;(2)当(0,1)a ∈时,判断()f x 的单调性,并写出()f x 的最小值。
10、已知函数()2af x x x=+的定义域为(]0,2(a 为常数). (1)证明:当8a ≥时,函数()y f x =在定义域上是减函数;(2)求函数()y f x =在定义域上的最大值及最小值,并求出函数取最值时x 的值。
11、(1)若函数()log 4,(0,1)a a f x x a a x ⎛⎫=+->≠ ⎪⎝⎭的定义域为R +,数a 的取值围; (2)若函数()log 4,(0,1)a a f x x a a x ⎛⎫=+->≠ ⎪⎝⎭的值域为R +,数a 的取值围。
12、已知函数ay x x=+有如下性质:如果常数0a >,那么该函数在上是减函数,在)+∞上是增函数。
(1)如果函数2by x x=+在(0,4]上是减函数, 在[4,)+∞上是增函数,常数b 的值;(2)设常数[1,4]c ∈,求函数(12)cy x x x=+≤≤的最大值和最小值。
分式函数的图像与性质一、概念提出1、分式函数的概念形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。
如221x y x x +=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,y =等。
二、学习探究探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x=的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞;对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d +=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示xOyxOy12xOy 1问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
【分析】画函数图像需要考虑函数的定义域、值域、单调性与单调区间,奇偶性,周期性,凸凹性(此点不作要求),关键点坐标(最值点、与坐标轴交点)、辅助线(对称轴、渐近线)。
绘图过程中需综合考虑以上要素,结合逼近与极限思想开展。
解:函数的定义域为:{|0}x x ≠; 根据单调性定义,可以求出1y x x=+的单调区间 增区间:(,1][1,)-∞-+∞ 减区间:[1,0),(0,1]-函数的值域为:(,2][2,)-∞-+∞ 函数的奇偶性:奇函数函数图像的渐近线为:,y x =0x = 函数的图像如下:【反思】如何绘制陌生函数的图像?研究新函数性质应从哪些方面入手? 【小结】分式函数(,0)by ax a b x=+>的图像与性质: (1)定义域:{|0}x x ≠;(2)值域:{|2,2}y y ab y ab ≥≤-或;xOyy x=xO yy x=1y x=x OyxO y(3)奇偶性:奇函数; (4)单调性:在区间(,][,+)b ba a-∞-∞上是增函数, 在区间(0,],[,0)b ba a-上为减函数; (5)渐近线:以y 轴和直线y ax =为渐近线;(6)图象:如右图所示例3、根据y x =与1y x =的函数图像,绘制函数1y x x=-的图像,并结合函数图像指出函数具有的性质。
【分析】结合刚才的绘图经验,不难绘制出1y x x=-的图像解:函数的定义域为:{|0}x x ≠;根据单调性定义,可以判断出1y x x=-的单调性,单调增区间为:(,0),(0,)-∞+∞函数的值域为:R 函数的奇偶性:奇函数函数图像的渐近线为:,y x =0x = 函数的图像如下:【反思】结合刚才的两个例子,1y x x =--与1y x x =-的图像又是怎样的呢?思考12+y x x =与23y x x=-的xO yxOyy x=1y x=y ax=b ab a-2ab2ab-xOy图像是怎样的呢?(,,0)by ax a b R ab x=+∈≠的图像呢? 函数1y x=--的图像如下,绘制的过程可以根据刚才的绘图经验。
【注】()y x x x x =--=-+,由于()y f x =与()y f x =-的图像关于x 轴对称,所以还可以根据1y x x=+的图像,对称的画出1y x x =--的图像。