数字图像处理办法方式图象描述
- 格式:ppt
- 大小:334.00 KB
- 文档页数:56
数字图像处理的原理与方法数字图像处理是一种将数字信号处理技术应用到数字图像上的科学技术,它的出现极大地推动了图像处理技术的发展。
数字图像处理不仅可以用于医学图像处理、卫星图像处理、工业检测等领域,还可以应用于数字影像娱乐等方面。
数字图像处理的核心内容就是图像增强、图像恢复、图像分割、图像识别等,本文将主要探讨数字图像处理的原理与方法。
一、图像增强处理图像增强处理是对原始图像进行改善的过程,也是数字图像处理中最普遍的操作类型。
通过增强处理,可以使图像局部特征更加明显,以便进行更高级的图像分析。
常见的图像增强方法包括灰度线性变换、灰度非线性变换、空域滤波增强、频域滤波增强等。
其中,空域滤波增强是最常见的一种方法。
通过对原始图像进行高斯滤波、中值滤波等操作,可以有效去除图像中的噪声。
二、图像恢复处理图像恢复处理是指从已知的图像信息中恢复出原始图像的过程,也是数字图像处理中一种重要的方法。
在数字图像处理中,图像的失真比如模糊、噪声等是不可避免的。
而图像恢复就是通过各种手段找到原始图像中所保留的信息,以恢复图像失真前的形态。
常见的图像恢复处理方法包括逆滤波、维纳滤波、约束最小二乘滤波等。
三、图像分割处理图像分割处理是将图像分割成若干具有独立意义的子区域的过程。
图像分割处理是数字图像处理中一种热门的研究领域,其主要应用于目标提取、图像分析和模式识别等方面。
常用的图像分割方法包括基于像素的算法、基于区域的算法、边缘检测算法等。
其中,基于区域的算法应用最广。
通过对相似区域进行聚类,可以将图像分割成若干子区域,从而实现目标提取等功能。
四、图像识别处理图像识别处理是指对图像进行自动识别的过程。
图像识别处理是数字图像处理中的一大领域,它的技术含量非常高。
常见的图像识别处理方法包括特征提取、模式匹配、神经网络等。
其中,特征提取是一种重要的处理方式。
通过对图像进行特征提取,可以将图像转化为数字特征,从而实现对图像的自动识别和分类。
数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。
图像处理是信号处理在图像域上的⼀个应⽤。
⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。
本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。
由于篇幅所限,只给出某⼀算法的主体代码。
ok,请细看。
⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。
灰度分为256阶。
所以,⽤灰度表⽰的图像称作灰度图。
程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。
这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。
第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理学院:行12数信院姓名:姜晶学号:12202509教师:朱杰时间:2014年10月一绪论1.1人类传递信息的主要媒介是语音和图像。
据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。
目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。
数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。
数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。
图像的概念视觉是人类最重要的感知手段,图像视觉的基础。
图像处理是计算机信息处理的重要内容。
图像可以是可视的和非可视的,也可以是抽象的和实际的。
一般情况下,一幅图像是另一种事物的表示,它包含了有关其所表示物体的描述信息。
可以包括人眼看见的方式显示这一信息,也可以包括人眼不能感知的形式表示信息。
图像是器所表示物体信息的一个浓缩或概括。
一般来说,一幅图像包含的信息远比原物体要少。
因此,一幅图像是该物体的一个不完全、不精确的,但在某种意义上是恰当的表示。
实际上,图像与光学密切相关,即与光的照射、反射密切相关。
因此,从理论上来说,一幅图像可以被看作为空间各个坐标点上光的强度的集合。
数字图像处理期末总结绪论图像:是客观目标的一种相似性描述,它包含了被描述的对象,是客观世界三维实体到维实体的变换(连续图像)。
数字图像:连续图像经过空间离散化,灰度整量后的图像。
连续图像处理:利用光学、化学方法对图像进行一系列操作。
数字图像处理:基于计算机和一定的数学变换方法,对数字图像进行一系列的操作处理,称为数字图像处理。
数字图像处理目的:数字图像处理强调图像间的数学变换,目的是对图像进行各种加工处理,以改善图像视觉效果,并为自动识别打下基础。
或对图像进行压缩编码,以减少所需存储空间和传输时间。
数字图像处理主要内容:图像获取、图像显示、图像变换、图像增强、图像压缩、图像恢复与重建、图像分割、图像描述、图像纹理分析第二章、数字图像处理基础2.2图像与数字化2.21连续图像:指图像强度随空间位置,光线波长入及时间t变化。
2.211灰度图象:仅考虑光的能量,不顾及波长(频率)变化,图像视觉上表示为灰度变化,称为灰度图像或单色图像。
2.212彩色图像:由于不同波长光的彩色效应,则图像视觉上表现为彩色图像。
2.213静止图像:图像内容不随时间变化的图像称为静止像像,反之称为运动图像。
2.22图像数字化:图像数字化是将一幅图像转换成计算机可以处理的形式。
图像数字化分为采样与整量两部分。
2.22.1采样:将连续图像在空间上进行离散化的过程。
其中采样间隔与采样孔是两个重要参数的选择。
2.22.2整量:连续图像经过空间离散化,其像素灰度需转换成离散整数值过程。
2.3直方图:表示图像中各灰度级与对应灰度级像素出现的频率间关系。
性质:(1)直方图上没有位置信息,灰度直方图仅统计某一灰度值的像素个数占全幅像素的比例,同一灰度的像素在图象中空间位置未表示。
(2)直方图是总体灰度概念,直方图可以看出图像总体性质,一幅图像对应唯一直方图,但不同图像可能有相同直方图。
(3)直方图可叠加性,一幅图像分成数个不同区域,各区域直方图之和即为该像直方图。
数字图像处理实验实验总学时:10学时实验目的:本实验的目的是通过实验进一步理解和掌握数字图像处理原理和方法。
通过分析、实现现有的图像处理算法,学习和掌握常用的图像处理技术。
实验内容:数字图像处理的实验内容主要有三个方面:(1) 对图像灰度作某种变换,增强其中的有用信息,抑制无用信息,使图像的视在质量提高,以便于人眼观察、理解或用计算机对其作进一步的处理。
(2) 用某种特殊手段提取、描述和分析图像中所包含的某些特征和特殊的信息,主要的目的是便于计算机对图像作进一步的分析和理解,经常作为模式识别和计算机视觉的预处理。
这些特征包括很多方面,例如,图像的频域特性、灰度特征、边界特征等。
(3) 图像的变换,以便于图像的频域处理。
实验一图像的点处理实验内容及实验原理:1、灰度的线性变换灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换。
该线性灰度变换函数是一个一维线性函数:灰度变换方程为:其中参数为线性函数的斜率,函数的在y轴的截距,表示输入图像的灰度,表示输出图像的灰度。
要求:输入一幅图像,根据输入的斜率和截距进行线性变换,并显示。
2、灰度拉伸灰度拉伸和灰度线性变换相似。
不同之处在于它是分段线性变换。
表达如下:其中,(x1,y1)和(x2,y2)是分段函数的转折点。
要求:输入一幅图像,根据选择的转折点,进行灰度拉伸,显示变换后的图像。
3、灰度直方图灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(象素的个数)。
要求:输入一幅图像,显示它的灰度直方图,可以根据输入的参数(上限、下限)显示特定范围的灰度直方图。
4、直方图均衡:要求1 显示一幅图像pout.bmp的直方图;2 用直方图均衡对图像pout.bmp进行增强;3 显示增强后的图像。
实验二:数字图像的平滑实验内容及实验原理:1.用均值滤波器(即邻域平均法)去除图像中的噪声;2.用中值滤波器去除图像中的噪声3. 比较两种方法的处理结果 实验步骤:用原始图象lena.bmp 或cameraman.bmp 加产生的3%椒盐噪声图象合成一幅有噪声的图象并显示;1. 用均值滤波器去除图像中的噪声(选3x3窗口);2. f (x 0,y 0)=Med {f (x,y )∨x ∈[x 0−N,x 0+N ],y ∈[y 0−N,y 0+N ]}用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波);3. 将两种处理方法的结果与原图比较,注意两种处理方法对边缘的影响。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
第十一章 图像描述和分析灰度描述基于边界的表达基于区域的表达基于变换的表达基于边界的描述基于区域的描述纹理描述形状分析图像分析是一种描述过程,研究用自动或半自动系统,从图像中提取有用数据或信息生成非图的描述或表达。
图像分析:图像分割、特征提取、符号描述、纹理分析、运动图像分析和图像的检测与配准。
预处理图像分割特征提取分类描述符号表达识别跟踪图像理解输入图像第十一章 图像描述和分析第十一章 图像描述和分析通过图像分割可得到图像中感兴趣的区域,即目标。
图像中目标的表达/表示和描述:先需要将目标标记出来,这时主要考虑目标像素的连通性。
在此基础上,可以对目标采取合适的数据结构来表达,并采用恰当的形式描述它们的特性。
第十一章 图像描述和分析图像分割结果得到了区域内的像素集合,或位于区域边界上的像素集合,这两个集合是互补的。
与分割类似,图像中的区域可用其内部(如组成区域的像素集合)表达,也可用其外部(如组成区域边界的像素集合)表达。
一般来说,如果关心的是区域的反射性质,如灰度、颜色、纹理等,常用内部表达法;如果关心的是区域形状、曲率,则选用外部表达法。
第十一章 图像描述和分析表达是直接具体地表达目标,好的表达方法应具有节省存储空间、易于特征计算等优点。
描述是较抽象地表达目标。
好的描述应在尽可能区别不同目标的基础上对目标的尺度、平移、旋转等不敏感,这样的描述比较通用。
描述可分为对边界的描述和对区域的描述。
此外,边界和边界或区域和区域之间的关系也常需要进行描述。
第十一章 图像描述和分析表达和描述是密切联系的。
表达的方法对描述很重要,因为它限定了描述的精确性;而通过对目标的描述,各种表达方法才有实际意义。
表达和描述又有区别,表达侧重于数据结构,而描述侧重于区域特性以及不同区域间的联系和差别。
表达和描述抽象的程度不同,但其分别的界限是相对的。
第十一章 图像描述和分析对目标特征的测量是要利用分割结果进一步从图像中获取有用信息,为达到这个目的需要解决两个关键问题:选用什么特征来描述目标如何精确地测量这些特征常见的目标特征分为灰度、颜色、纹理和几何形状特征等。
1.数字图像处理的方法(1)图像信息获取(2)图像信息存储(3)图像信息处理(4)图像描述(5)图像识别(6)图像理解2.数字图像处理的特点(1)再现性好(2)处理精度高(3)适用领域广泛(4)灵活性强(5)图像数据量庞大(6)占用频带较宽(7)图像质量评价受主观与因素的影响(8)数字图像处理涉及技术领域广泛3.图像在空间上的离散化称为采样,也就是用空间上部分点的灰度值代表图像,这些点称为采样点。
4.假定图像取M×N个采样点,每个像素量化后的二进制灰度值位数为Q(Q为2的整数幂),则存储一幅数字图像所需的二进制位数为b=M×N×Q字节数为B=M×N×Q/8(Byte)5.为了得到质量良好的图像可以采用如下原则:(1)对边缘逐渐变化的图像,应该增加量化等级,减少采样点数,以避免图像的假轮廓。
(2)对细节丰富的图像,应该增加采样点数,减少量化等级,以避免图像模糊(即混叠)。
6.图像的显示特性最重要的显示特性是图像的大小,光度分辨率,空间分辨率,低频响应和噪声特性。
7.颜色的三个属性:色调(H),饱和度(S),亮度(I )。
8.在印刷工业上,通常用CMYK颜色模型,它是通过颜色相减来产生其他颜色的,称为颜色合成法.9.在CMYK模型中,当所有四种分量的值都是0﹪时,就会产生纯白色。
10.由于RGB色彩模型的图像直接采用CMYK色彩模型打印会产生分色,所以要将使用的图像素材的RGB色彩模型转换为CMYK色彩模型11.Y=0.299R+0.587G+0.114B12.灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数,其横坐标是灰度级,纵坐标是该灰度出现的概率,即等于该会读的像素的个数与总像素之比。
13.一幅连续图像中被具有灰度级D的所有轮廓线所包围的面积,称为阈值面积函数表示为A(D)。
直方图可定义为H(D)=-dA(D)/d(D)14.直方图的性质(1)直方图是一幅图像中各像素灰度值出现次数的统计结果它只反映该图像中不同灰度值出现的次数,而不能反映某一灰度值像素所在位置。