当前位置:文档之家› (完整版)均值不等式及其证明

(完整版)均值不等式及其证明

(完整版)均值不等式及其证明
(完整版)均值不等式及其证明

1平均值不等式及其证明

平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。

1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为

12...,n

n a a a A n

+++=

几何平均值记为

112(...)n

n n G a a a == 算术平均值与几何平均值之间有如下的关系。

12...n a a a n

+++≥

即 n n A G ≥,

当且仅当12...n a a a ===时,等号成立。

上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。

1.2 平均值不等式的证明

证法一(归纳法)

(1) 当2n =时,已知结论成立。

(2) 假设对n k =(正整数2k ≥)时命题成立,即对

0,1,2,...,,i a i k >=有

1

1212...(...)k

k n a a a a a a k

+++≥。

那么,当1n k =+时,由于

121

1 (1)

k k a a a A k +++++=

+,1k G +=,

关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥.

所以 1111211

1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-=

==

2111...()k k k a a a a A k

++++++-=≥即12111...()k

k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。

从而,有11k k A G ++≥

证法二(归纳法)

(1) 当2n =时,已知结论成立。

(2) 假设对n k =(正整数2k ≥)时命题成立,即对

0,1,2,...,,i a i k >=有

12...k a a a +++≥

那么,当1n k =+时,由于

121

...k k a a a a +++++121111...(...)(1)k k k k k a a a a G G k G ++++=+++++++--

1(1)k k G +≥-

12(1)k k G +≥-

12(1)k k k G +=-1(1)k k G +=+

从而,有11k k A G ++≥

证法三(归纳法)

(1) 当2n =时,已知结论成立。

(2) 假设对n k =(正整数2k ≥)时命题成立,即对

0,1,2,...,,i a i k >=有

12...k a a a +++≥

那么,当1n k =+时,由于

121...k k a a a a +++++

证法四(归纳法和变换)

证法五(利用排序不等式)

设两个实数组12,,...,n a a a 和12,,...,n b b b 满足 1212...;...n n a a a b b b ≤≤≤≤≤≤, 则 1122...n n a b a b a b +++(同序乘积之和) ≥1122...j j n jn a b a b a b +++(乱序乘积之和) ≥1211...n n n a b a b a b -+++(反序乘积之和)

其中12,,...,n j j j 是1,2,...,n 的一个排列,并且等号同时成立的充分必要条件是12...n a a a ===或12...n b b b ===成立。 证明:

切比雪夫不等式(利用排序不等式证明)

杨森不等式(Young )设12120,0,1λλλλ>>+=则对12,0x x >有 12

12

1122x x x x λ

λλλ≤+ 等号成立的充分必要条件是12x x =。

琴生不等式(Jensen )

设(),(,)y f x x a b =∈为上凸(或下凹)函数,则对任意(,)i x a b ∈

(1,2,...,)i n =,我们都有

11221122()()...()(...)n n n n f x f x f x f x x x λλλλλλ+++≤+++或 11221122()()...()(...)n n n n f x f x f x f x x x λλλλλλ+++≥+++

其中 1

0(1,2,...,)1n

i i

i i n λλ

=>==∑

习题一

1. 设11

,,

1a b R a b

+

∈+=。求证:对一切正整数n ,有 21()22n n n n n a b a b ++--≥-

2. 设,,,a b c R +

∈求证:

(1)(1)(1)2(1a b c b c a +++≥

3. 设123,,x x x 为正实数,证明:

222332112123231

()()()x x x x x x

x x x x x x ++≤++ 4. 设,,,a b c R +

∈1a b c ++=,求证:

(1)(1)(1)8(1)(1)(1)a b c a b c +++≥---

5. 设,,x y z R +

∈,且x y z ≥≥,求证:

222222x y y z z x

x y z z x y

++≥++

6. 设,,a b c R +

∈,满足222

1a b c ++=,求证:

ab bc ca

c a b

++≥ 7. 设,,,a b c d 是非负实数,满足1ab bc cd da +++=,求证:

33331

3

a b c d b c d c d a d a b a b c +++≥++++++++ 8. 设n 为给定的自然数,3n ≥,对于n 个给定的实数12,,...,;n a a a

记(1)i j a a i j n -≤<≤的最小值为m ,求在222

12...1n a a a +++=的

条件下,m 的最大值。

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12n n a a a A n ++???= n Q =它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系: n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n A n =当n=k+1n a ≤≤ 1 111= i k i k a A +==+ +∑∑ 111 111(1)(11).1k i i i i k i i i i k k k a a a a k k a A a k k k k ====++? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ?? ? ? ??? ∑ 1111 1.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

20,n n n n n A G A G =-=≥≥当时,成立。 ++k N ∈k k 1假设:n=2()时成立,当n=2时: ++++1 +1 1 ++ = =.i i i i i i a a a A G ===≥ ≥=∑∑∑k 1 k k 1 k k 1k 12222k k 2k 1 222 2 2 2 +,k N ?∈k 即,对当n=2时,结论成立。 假设1 t t tA G t ++证法三:0.k b = >令: 111)k k k k k k b b b ----+ +≥11 k k k k b b --即:k kb 且:11112211[(1)]n n n k n n k k k n k k k k k A b b b kb k b a G b --===-==≥--== 12n ===.n n G A a a a ∴≤等号成立当且仅当: 上述不等式在数学竞赛中应用极为广泛,好的、难的不等式问题往往只需用它们即可解决,而无需过分追求所谓更“高级”的不等式,这是应该引起我们注意的。 例1:求证下列不等式: (1) ()1 3a a b b + ≥-,(0)a b >>

数学分析中不等式证明方法论文

数学分析中不等式证明方法论文 毕业论文(设计)开题报告 题目:数学分析中不等式证明方法 1 目录 摘要((((((((((((((((((((((((((((((((((((((((((((((3 英文摘要((((((((((((((((((((((((((((((((((((((((((((((4 第1章不等式的定义及研究背景(((((((((((((((((((((((((5 1.1不等式的定义((((((((((((((((((((((((((((((((((((5 1.2不等式的研究背景(((((((((((((((((((((((((((((((((5 第2章数学分析中不等式的证明方法与举例(((((((((((((((6 2.1?构造变上限积分函数(((((((((((((((((((((((((((((((6 2.2?利用拉格朗日中值定理进行证明(((((((((((((((((((((((((7 2.3?利用微分中值定理证明积分不等式((((((((((((((((((((((((8 2.4?积分中值定理解不等式((((((((((((((((((((((((((((((((((9 2.5?利用泰勒公式证明不等式((((((((((((((((((((((((((((((((10 2.6?用函数的极值进行证明(((((((((((((((((((((((((((((((((12 2.7?用函数凹凸性进行不等式的证明((((((((((((((((((((((((((13 2.8利用函数单调性解不等式((((((((((((((((((((((((((((((((13 2.9利用条件极值求解不等式((((((((((((((((((((((((((((((((14 2.10利用两边夹法则证明不等式(((((((((((((((((((((((((((((15 第3章不等式证明方法的归纳总结(((((((((((((((((((((17 第4章论文的结论与展望(((((((((((((((((((((((((((((((18 致谢

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

数学论文【不等式的证明方法】(汉)

不等式的证明方法 麦盖提县库尔玛乡中学 买合木提·买买提 2012年12月30日

2 不等式的证明方法 不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。 1.证明不等式的基本方法 1.1比较法 比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下: 比差法。主要依据是实数的运算性质与大小顺序关系。即 , 0,0,0a b a b a b a b a b a b ->?>- 欲证a b >只需证 1a b > 欲证a b <只需证1a b < 基本解题步骤是:作商——变形——判断。(与1的大小) 例1. 求证: 222(2)5a b a b +≥-- 2 2 2 2 4254250a b a b a b a b +≥--=>+-++≥ 2 2 (44)(21)0a a b b -++++≥

3 2,1a b ==-时等号成立。 所以222(2)5a b a b +≥--成立。 例2. 已知,a b R +∈求证a b b a a b a b ≥ 证: ,a b R +∈ 又 ()a b a b b a a b a a b b -=∴()1a b b a a b a a b a b b -≥?≥ (1)当a b >时, 1a b >,0a b ->所以()1a b a b -> (2)当a b <时01,a a b o b < <-<所以()1a b a b -> (3)当a b =时不等式取等号。 所以(1),(2),(3)知,不等式a b b a a b a b ≥成立。 1.2.综合法 综合法就是从已知式已证明过的不等式出发,根据不等式的性质推出,欲证的不等式,通过一系列已确定的命题(包含不等式的性质,已掌握的重要不等式)逐步推演,从而得到所要求证的不等式成立,这种方法叫做综合法。 几个重要不等式:2222()0,(),2,(,a b a b a b ab a b ->≠+≥ 为实数) /2(0,0),//2,(,a b a b a b b a a b +≥ >>+≥同号) /3a b c ++≥a b c ==成立) 例3.已知 a b ≠ 且 ,a b R +∈ 求证: 3322 a b a b ab +>+

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

不等式的证明方法论文

不等式的证明方法 摘要 不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考. 关键词:不等式;证明;方法

Methods for Proving Inequality Abstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers. Key words: inequality; proof; method

常用均值不等式及证明证明

常用均值不等式及证明证明 这四种平均数满足Qn An Gn H ≤≤≤n + ∈R n a a a 21、、、Λ,当且仅当n a a a 21===Λ时取“=”号 仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2) 由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b ,有ab 2b a 22 ≥+ (当且仅当a=b 时取“=”号), ab 20b ,a 22>> (4)对实数a,b ,有 ()()b a b b a --a ≥ (5)对非负实数a,b ,有 02a 22≥≥+ab b

(8)对实数a,b,c ,有 ac bc ab c b a 222++≥++ (10)对实数a,b,c ,有 3 3 a abc c b ≥++ 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、 柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设A ≥0,B ≥0,则()()B n n nA A B A 1-n +≥+ 注:引理的正确性较明显,条件A ≥0,B ≥0可以弱化为A ≥0,A+B ≥0 当n=2时易证; 假设当n=k 时命题成立,即 那么当n=k+1时,不妨设 1 a +k 是 1 21a ,,a ,a +k Λ中最大者,则 1211k ka +++++≥k a a a Λ 设 k a a a +++=Λ21s 用归纳假设 下面介绍个好理解的方法 琴生不等式法 琴生不等式:上凸函数()n x x x x f ,,,,21Λ是函数()x f 在区间(a,b) 内的任意n 个点,

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

数学不等式证明方法论文开题报告

湖北大学 本科毕业论文(设计)开题报告 题目高中数学不等式的证明方法 姓名梁艳平学号2011221104110067 专业年级2011级数学与应用数学 指导教师付应雄职称副教授 2015年03月03日 本课题的研究目的及意义 现实世界中的量有相等关系,也有不等关系,凡是与比较量的大小有关的问题,都要用到不等式的知识。不等式在解决最优化、最优控制、经济等各类实际问题中有广泛的应用,它是学习和研究现代科学和技术的一个基本工具。 不等式在中学数学中占有重要地位,在历年高考中颇为重视。由于不等式的形式各异,所以证明方法灵活、技巧多样,因此不等式的证明也是中学数学的难点之一。 为了突破难点,我认为有必要对一些常见的证明方法和典型例题进行一些思考、研究和总结。 已了解的本课题国内外研究现状。 不等式的证明方法在国内外的研究都趋于高深、复杂、多方向化。 不等式的证明方法也大多用于竞赛和考察数学素养。 本课题的研究内容 本课题主要研究不等式一些常见的证明方法:比较法,综合法,分析法,反证法,放缩法,数学归纳法,换元法,构造法和判别式法等。 本课题研究的实施方案、进度安排。 首先通过查阅国内外相关文献资料对不等式的证明方法做一个全面的了解,并了解学生对于不等式的证明方法的掌握程度与思考方式,其次,对于每种方法要举出一个典型的例子来帮助读者理解。 2015年1月——2014年2月:搜集、分析资料,确定题目; 2015年3月初:开题报告; 2015年3月初——3月底:撰写论文初稿;3月31日前提交纸质版初稿; 2015年4月中旬前:修改论文,定稿:外文翻译; 2015年4月底:论文答辩。 已查阅的主要参考文献 [1]胡汉明.不等式证明问题的思考方法.数学通讯.2004(11). [2]韩京俊.初等不等式的证明方法.哈尔滨工业大学出版社. [3]严镇军.不等式.人民教育出版社. [4]王胜林.卫赛民.证明不等式的几种特殊方法,数学通讯.

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

不等式证明的若干方法大学毕业论文

2013届毕业生毕业论文课题名称:不等式证明的若干方法 教学系:数学系 专业:数学教育 班级:10级数学教育(4)班学号:131002162 姓名:李亚军 指导教师:连玉平 时间:2013年5月15日

定西师范高等专科学校 10 级数学系毕业论文开题报告

目录 摘要 (3) 关键词 (3) 前言 (3) 第一章常用方法 (3) 1.1比较法(作差法) (3) 1.2作商法 (4) 1.3分析法(逆推法) (4) 1.4综合法 (4) 1.5反证法 (5) 1.6迭合法 (5) 1.7放缩法 (6) 1.8数学归纳法 (6) 1.9换元法 (7) 1.10三角代换法 (7) 1.11判别式法 (7) 第二章利用函数证明不等式 (8) 2.1函数极值法 (8) 2.2单调函数法 (8) 2.3中值定理法 (9) 2.4利用拉格朗日函数 (9) 第三章利用著名不等式证明 (10) 3.1利用均值不等式[ (10) 3.2利用柯西不等式 (12) 3.3利用赫尔德不等式 (12) 3.4利用詹森不等式 (12) 参考文献 (13)

摘 要:无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等 式的证明则是不等式知识的重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯. 关键词 不等式 比较法 数学归纳法 函数 前 言 在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的认识要比方程要迟的多.直到17世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论的一个重要组成部分. 在研究数学的不等式过程中,有许多的内容都十分的有用,如:不等式的性质、不等式的证明方法和不等式的解法. 在本文中,我们就不一一说明了,而主要的介绍一些证明不等式的常用方法、利用函数证明不等式的方法和利用一些著名不等式证明不等式的方法.希望通过这些方法的学习,我们可以很好的认识数学的一些特点.从而开拓一下我们的数学视野,深化一下我们对不等式证明方法的认识,以便于可以站在更高的角度来研究数学不等式. 第一章 常用方法 1.1比较法(作差法) 在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等. 例1 已知:0>a ,0>b ,求证:ab b a ≥+2 . 证明 02 )(2222 ≥-=-+=-+b a ab b a ab b a ,

相关主题
文本预览
相关文档 最新文档