自适应空气悬架系统
- 格式:ppt
- 大小:4.96 MB
- 文档页数:43
空气悬架:维持汽车稳定的核心原理
空气悬架是现代汽车普及的先进技术之一。
作为汽车悬挂系统的
一种,它具有良好的稳定性和舒适性,能够适应各种路况和驾驶需求。
其核心原理可以归结为以下几点:
1.压缩空气的储存:空气悬架在车轮下方安装了气囊,一般由橡
胶或橡胶涂层的帆布材料制成。
这些气囊内充满了一定压力的空气,
可以抵消汽车行驶时的震动,起到缓冲的作用。
而这些气囊可以通过
不同的控制系统进行加减压,从而达到调节汽车高度和硬度的目的。
2.阀门的调控:空气悬架的控制设备包括气泵、阀门等。
这些设
备能够自动测量车轮下方的气囊压力和车身高度,根据所设定的条件
控制气囊的充气量。
在行驶时,其阀门会自动调整,防止车身晃动、
过度下沉等情况的发生。
3.自适应系统的作用:空气悬架还拥有一些自适应的功能。
比如说,它可以根据车速和路况自动调整车身高度,以提供更佳的行驶体验。
在高速公路上,它会自动降低车身高度,降低风阻提高稳定性。
而在颠簸路面上,它会自动加压气囊来保持汽车的稳定性。
总的来说,空气悬架应用了先进的气动学和控制系统技术,能够
为司机提供更舒适、更稳定的驾驶体验。
在汽车领域,它的应用前景
非常广阔,未来也将在各种类型的汽车上更广泛地使用。
10.16638/ki.1671-7988.2021.06.031基于LQR控制的现代客车自适应空气悬架王旭(扬州亚星客车股份有限公司,江苏扬州225116)摘要:长期在不良工况的道路上驾驶会降低驾驶员的乘坐舒适性。
随着人们对乘坐舒适性需求不断提升,空气弹簧的优势尤为明显。
文章提出了一种基于LQR控制策略的自适应空气悬架系统的创新设计方案,提出的LQR控制器采用粒子群算法进行优化。
以客车空气悬架为研究对象,采用MATLAB软件对空气悬架系统的被动和自适应动力学模型进行了设计和仿真。
仿真结果表明,自适应空气悬架系统在保证车辆稳定性的同时,降低了车辆在随机道路上的最大位移幅值,从而提高了车辆的平顺性。
关键词:空气悬架;PID;PSO;自适应悬架;乘坐舒适性中图分类号:U461.4 文献标识码:A 文章编号:1671-7988(2021)06-101-04Modern passenger car adaptive air suspension based on LQR controlWang Xu( Yangzhou Yaxing Bus Co., Ltd., Jiangsu Yangzhou 225116 )Abstract: Driving on the road under bad working conditions for a long time will reduce the driver's riding comfort. With the increasing demand for ride comfort, the advantage of air spring is especially obvious. This paper presents an innovative design scheme of adaptive air suspension system based on LQR control strategy. The proposed LQR controller is optimized by particle swarm optimization. The passive and adaptive dynamic models of the air suspension system of passenger cars were designed and simulated by MATLAB software. The simulation results show that the adaptive air suspension system can not only ensure the stability of the vehicle, but also reduce the maximum displacement amplitude of the vehicle on the random road, thus improving the ride comfort of the vehicle.Keywords: Air suspension; PID; PSO; Adaptive suspension; Ride comfortCLC NO.: U461.4 Document Code: A Article ID: 1671-7988(2021)06-101-041 引言对驾驶舒适性需求的增加要求在汽车上使用主动悬架系统。
奥迪车系新技术名词简释ADAPTIVE AIR SUSPENSION SYSTEM自适应式空气悬架系统,可以根据路面情况,自动调节车身高度和悬挂的韧性,使操控灵活性与乘座舒适性完美结合,驾驶者可以自由选择AUTOMATIC(自动),COMFORT(舒适)、DYNAMIC(动感)和LIFT(车身升高)4种悬架工作模式。
ADAPTIVE LIGHT自适应前照灯,该技术远胜于传统的前照灯。
在转弯期间,在前照灯照亮道路的直线区域之前,道路前方以及弯道周围的障碍物有相当长的一段时间处于黑暗之中。
但是,奥迪的自适应大灯可以动态调节方向盘的移动以及车辆前进方向的变化:根据各种参数,例如行驶速度、转向角和偏移速率等,计算出前照灯位置必要的修正值。
在10km/h到110km/h的速度范围内,前照灯组可随方向盘的转向角度最多旋转15°。
在转向和转弯时显著改善道路前方的照明,同时,由于驾驶员能够及早发现路面障碍物及其他车辆,并在警觉度足够高的情况下有充足的时间做出反应,因此大大提高了安全性能。
ADAPTIVE CRUISE CONTROL自适应定速巡航控制系统,该系统借助特殊的雷达传感器测量与前方汽车之间的距离以便控制车速,并确保行驶速度不超过设定值。
此外,自适应巡航控制系统还能自动与前方行驶的汽车保持恒定的距离。
ADVANCED KEY高级钥匙,这种先进的车钥匙其实一套电子存取和授权识别系统。
携带车钥匙的驾驶员在离汽车大概1.5m的范围内停下,然后将手伸向车门把手,车门内的接近传感器和钥匙壳内的射频脉冲发生器立即识别钥匙身份。
拉动车门把手时,汽车可以自动开锁。
这种高级钥匙在驾驶员的口袋中即可开锁并起动汽车。
AUDI DRIVE SELECT奥迪驾驶模式选择,奥迪驾驶模式选项系统综合了各种决定驾驶品质的尖端部件,包括发动机、变速器、转向机构(可选配),避震器(可选配)和运动差动器(可选配)。
驾驶员可以随时调节这些系统的特性以满足个人的偏好。
空气悬架系统1. 介绍空气悬架系统(Air Suspension System)是一种汽车悬挂系统,通过气囊和电磁阀实现对车辆悬挂高度的调节。
相比传统弹簧悬挂系统,空气悬架系统可以实现可调节的车身高度,提供更好的舒适性和稳定性。
本文将介绍空气悬架系统的工作原理、优势和应用等内容。
2. 工作原理空气悬架系统通过气囊和电磁阀来实现对车辆悬挂高度的调节。
系统中的电磁阀可根据车身高度的变化对气囊中的气体进行充放控制,从而实现悬挂高度的调节。
2.1 气囊空气悬架系统中的气囊是系统的核心组件之一。
气囊通常由柔性橡胶材料制成,具有良好的弹性和耐用性。
气囊内部充满了压缩空气,通过调节气囊内气体的压力可以实现对车身高度的调节。
2.2 电磁阀电磁阀是控制气囊中气体的充放的装置。
它通过与车辆悬挂控制系统相连,根据车身高度的变化来控制气囊中的气体充放。
当车身高度需要增加时,电磁阀打开,允许气体从气囊外部进入气囊内部,从而提高车身的高度。
反之,当车身高度需要减少时,电磁阀关闭,阻止气体进入气囊,从而使车身降低。
3. 优势3.1 舒适性空气悬架系统的一个显著优势是提供更好的舒适性。
由于可以调节悬挂高度,车辆在行驶过程中可以根据路面情况自动调整悬挂高度,从而减少对驾乘人员的冲击和颠簸感。
尤其在通过凹凸不平的路面或者高速行驶时,空气悬架系统可以保持车身稳定,提供更平稳的行驶体验。
3.2 稳定性空气悬架系统可以提高车辆的稳定性。
通过调整悬挂高度,可以减少车辆重心的变化,从而降低车辆在转弯或急刹车时的侧倾和倾覆风险。
此外,空气悬架系统还可以根据行驶速度自动调整悬挂高度,提供更好的操控性能。
3.3 载重调节空气悬架系统还可以实现对载重的调节。
通过调整气囊中的气体压力,可以使车辆的悬挂高度适应不同的载重情况。
当车辆载重较重时,增加气囊中的气体压力可以提高悬挂高度,从而保持车身水平。
反之,当载重较轻时,减少气囊中的气体压力可以降低悬挂高度,提供更好的悬挂性能。
空气悬架工作原理
空气悬架是一种常见的汽车悬架系统,它通过空气压力来调节车身高度和硬度,提供更加舒适的驾驶体验。
下面将详细介绍空气悬架的工作原理。
1. 空气压缩机
空气悬架系统需要一个空气压缩机来产生所需的压缩空气。
这个压缩机通常位于引擎舱内,并由发动机带动。
当车辆启动时,空气压缩机开始工作,将大量的外部空气吸入并将其压缩成高压空气。
2. 气囊
在每个车轮上都有一个气囊,它是一个由某种弹性材料制成的袋子,可以容纳高压空气。
当汽车行驶时,如果路面不平或者载重过重,这些气囊会承受额外的负荷,并向外膨胀以支撑车身。
3. 阀门
阀门是控制高压空气进入和离开每个气囊的设备。
当汽车行驶时,阀门会根据路况和载重情况自动调节高压空气进入和离开每个气囊,以
保持车身的平稳和稳定。
4. 控制单元
控制单元是空气悬架系统的大脑,它通过感应车身高度和加速度等参数来控制阀门的开关,调节每个气囊的压力。
当车辆行驶在不同的路面或载重情况下,控制单元会自动调整气囊的硬度和高度,以提供更加舒适和安全的驾驶体验。
总之,空气悬架系统通过空气压力来调节车身高度和硬度,提供更加舒适和安全的驾驶体验。
它由空气压缩机、气囊、阀门和控制单元等组成,并通过自动调节每个气囊的压力来保持车身平稳和稳定。
电控空气悬架工作原理电控空气悬架是一种先进的汽车悬架系统,具有智能、自适应和自动调节的特点。
它通过电子控制单元及其周边传感器,实现了对车身高度的控制和调节,从而提升了汽车的行驶稳定性、安全性和乘坐舒适性。
下面将介绍电控空气悬架的工作原理,主要分为以下几个方面:一、空气弹簧电控空气悬架采用的是空气弹簧,其工作原理是在车身和车轴之间装置充气囊,通过充气和放气来调节车身高度。
当车辆行驶在不同的路况上时,通过传感器采集到车身高度的数据,电子控制单元根据这些数据来控制空气压缩机和电磁阀,从而实现对充气囊的充气和放气控制。
二、电磁阀电磁阀是电控空气悬架的核心部件,它在车身高度发生变化时,通过电子控制单元的信号控制固定时间内开启和关闭,使气囊内的气体进出达到最佳高度,从而调节车身高度的目的。
电磁阀的开启和关闭的快慢也会影响高度的调整效果。
通常情况下,当车速较慢时,开启和关闭时间会更长,而当车速较快时,电磁阀的开启和关闭时间会缩短,以确保高度调节的准确性和稳定性。
三、传感器传感器是电控空气悬架的另一个关键部件,它能够实时感知车身的高度和状态,并将这些信息传递给电子控制单元进行处理和控制。
传感器的种类较多,例如悬架传感器、车身角度传感器、加速度传感器、转向角度传感器等。
这些传感器的精度、灵敏度、抗干扰能力都非常重要,它们的设计和制作必须考虑到电磁干扰、温度变化、振动等诸多因素的影响。
四、电子控制单元电子控制单元是电控空气悬架的大脑,它能够实时地吸收传感器的数据,并根据这些数据来实现高度调节、防倾力控制、防抱死制动等功能。
在实际应用过程中,电子控制单元还可以通过网络连接和其他控制单元进行通信交互,从而实现更加智能和自动化的控制。
总的来说,电控空气悬架可以通过空气弹簧、电磁阀、传感器和电子控制单元等多个部件的协作,实现对车身高度的智能控制和调节,从而提升汽车的整体性能和驾乘体验。
随着汽车科技的不断进步,电控空气悬架将会有更广泛的应用,成为汽车悬架系统的主流。
奥迪A8轿车电控空气悬架系统的检测作者:暂无来源:《汽车维修与保养》 2016年第6期文/ 江苏赵宝平赵玉亮汽车悬架系统是汽车底盘的重要组成部分之一,悬架系统性能的好坏,直接影响到汽车驾驶员的操纵性与乘客乘车的舒适性。
大多数人都会感觉到:因车辆的起步、加速、转弯、制动或减速,车内乘客容易坐不稳甚至摔倒,而奥迪A8轿车的可调空气悬架(Adaptive Air Suspension,AAS)技术能够很好地缓解这类现象。
奥迪A8轿车电控空气悬架系统是通过改变悬架的软硬度和减振系统阻尼的大小,以适应不同的行驶条件。
它提供了4种不同的车身离地间隙:最高离地间隙145mm、高速模式95mm、运动模式100mm和普通模式120mm,驾驶员可以根据不同的路况或车速进行选择。
如遇路面状况恶劣时,增加离地间隙以提高汽车的通过性;车辆在高速行驶时,选择运动模式以降低车身重心,增强车辆的行驶稳定性,同时也可以减少空气阻力、降低油耗。
不论选择什么模式,AAS都会根据安装在车身不同位置的多个传感器来感知载荷、车速和路面状况等信息。
通过这些信息可选择合适的悬架硬度和减振阻尼,使车辆在加速、制动和转弯时都能获得很好的车身控制,保持车身高度不发生变化,车辆在行驶时也基本上不产生侧倾,以获得良好的舒适性和操控性。
一、电控空气悬架系统的结构奥迪A8轿车电控空气悬架系统在车上的实际安装位置如图1所示。
奥迪A8轿车的自适应空气悬架系统包括空气压缩机、高度控制装置控制单元、4个车身高度传感器、3个车身加速度传感器、储压罐、空气弹簧及控制空气弹簧的电磁阀组,其电控AAS 系统示意图如图2所示。
二、重要构件1.电子控制单元ECU(J197)安装于车内储物箱前,用于处理其他总线部件的相关信息和独立的输人信号,处理生成控制信号,以控制压缩机、电磁阀和减振器。
2.空气弹簧空气弹簧采用外部引导式,并被封装在一个铝制的圆筒内,如图3所示。
为了防止灰尘进入圆筒与空气弹簧伸缩囊之间,采用密封圈密封活塞与汽缸之间的区域。
维修技巧Maintenance Skill栏目编辑:高中伟 ******************672014/04·汽车维修与保养电控空气悬架系统的原理、设置与检修◆文/陕西 蔡亚林 上海 李明诚悬架是汽车车身与车轮之间连接和传递动力的装置(图1),汽车的全部载荷通过悬架作用在车轮上。
目前,不少中、高档轿车和大型客车装备了电子控制空气悬架(ECAS)系统,这种悬架的刚度、阻尼以及车身高度能够自动适应汽车不同载重量、不同道路条件以及不同行驶工况的需要,在保证车辆具有良好操纵性和燃油经济性的前提下,使汽车的舒适性得到进一步提高。
平高度以及驾驶人选择的车身高度等,它的控制原理如图3所示。
图1 奥迪A8L轿车的空气悬架图2 丰田轿车的气动减振器结构图3 空气悬架系统的控制原理示意图一、结构原理电子控制空气悬架系统由模式选择开关、车速传感器、转向角度传感器、加速度传感器、车身高度传感器、悬架ECU、可调阻尼减振器(图2)、空气压缩机、空气弹簧以及高度控制电磁阀等部件组成。
对于奥迪轿车来说,下列控制单元与空气弹簧悬架控制单元J197有关联:①J104——ESP控制单元;②J220——发动机控制单元;③J533——网关;④J527——转向柱控制单元;⑤J 431——前照灯控制单元;⑥J285——仪表盘控制单元;⑦J345——挂车识别控制单元;⑧J518——进入和授权控制单元。
因此,如果空气弹簧悬架系统工作不正常,上述相关联的控制单元可能存在故障。
二、主要功能对于传统的机械式悬架系统,其钢板弹簧的刚度、减振器的阻尼力以及车身高度都是固定不变的,只能被动地吸收因地面不平引起的车轮跳动,因而乘坐不太舒适。
电子控制空气悬架系统由于装配了传感器、电子控制单元(ECU)和执行器,能够根据不同的车速、行驶状态、装载质量以及乘客人数的变化,对弹性元件的刚度、减振器的阻尼力以及车身的高度等项目自动地进行无级调节,无需驾驶人员调节,大大提高了乘坐的舒适性和操纵的稳定性。
空气悬挂标准
一、简介
空气悬挂是一种高级的车辆悬挂系统,它使用空气弹簧和减震器作为主要部件,能够提供更优异的驾驶体验和乘坐舒适性。
本标准主要涵盖空气悬挂系统的三个主要方面:空气弹簧和减震器、导向机构以及车身高度控制系统。
二、空气弹簧和减震器
1.空气弹簧和减震器应具备稳定的性能,能够在各种路况下提供均匀的支撑力。
2.空气弹簧应具有足够的弹性模量,以确保车辆在行驶过程中的稳定性。
3.减震器应能够有效吸收和分散车辆行驶过程中的震动和冲击。
三、导向机构
1.导向机构应具有足够的强度和刚度,以确保车辆在行驶过程中的稳定性。
2.导向机构应具有足够的耐磨性和抗疲劳性,以应对车辆行驶过程中产生的各种应力。
3.导向机构应具有足够的密封性,以防止空气弹簧中的空气泄漏。
四、车身高度控制系统
1.车身高度控制系统应能够根据车辆行驶状态和路况自动调节车身高度。
2.在车辆行驶过程中,车身高度控制系统应能够保持车身稳定,避免出现过度摇晃。
3.车身高度控制系统应能够在车辆停止时保持车身水平,以确保乘客的舒适度。
4.车身高度控制系统应具有防碰撞功能,在检测到碰撞可能发生时,能够自
动降低车身高度,以减小碰撞冲击。
5.车身高度控制系统应具有故障诊断功能,能够实时监测系统的工作状态,并在发现故障时及时报警提示。
五、其他要求
1.空气悬挂系统应具有可靠的电气连接,以确保系统的正常运行。
2.空气悬挂系统的部件应易于更换和维护,以提高系统的可靠性和使用寿命。
3.空气悬挂系统应符合相关安全标准,以确保系统的安全性能。
空气悬架行程悬架系统是汽车重要的组成部分之一,它在保证车辆操控性和乘坐舒适性方面起着重要作用。
而空气悬架作为一种高级悬架系统,具有较好的适应性和调节性能,广泛应用于高端豪华车型中。
本文将围绕空气悬架行程展开论述,探讨其特点和优势。
我们来了解一下什么是空气悬架行程。
空气悬架行程指的是悬架系统在运动过程中可调节的上下行程。
通常情况下,空气悬架行程是指车辆底盘与地面之间的垂直距离变化范围。
空气悬架行程的调节可以通过控制空气悬架系统的气压来实现,从而达到调节车辆高度和减震效果的目的。
空气悬架行程的特点在于其可调节性和适应性。
与传统悬架系统相比,空气悬架行程可以通过调节气压来实现多种高度和硬度的调节,适应不同路况和驾驶需求。
例如,在高速公路上,可以选择较低的车身高度和硬度,以提高车辆的稳定性和操控性;而在通过颠簸路面或越野行驶时,可以选择较高的车身高度和较软的悬架设置,以提供更好的通过性和乘坐舒适性。
空气悬架行程的优势主要体现在以下几个方面。
首先,空气悬架行程可以提供更好的减震效果。
由于空气悬架系统可以根据路况和驾驶情况实时调节气压,因此可以更好地吸收和分散来自路面的冲击力,有效减轻车辆震动和颠簸感。
其次,空气悬架行程可以提供更好的通过性。
在越野行驶时,通过增加车身高度和调节悬架硬度,可以提高车辆通过障碍物的能力,保证车辆的稳定性和越野性能。
再次,空气悬架行程可以提供更好的乘坐舒适性。
通过调节悬架行程和硬度,可以有效减少车辆在不平路面上的颠簸感,提供更加平稳舒适的乘坐体验。
除了以上的特点和优势,空气悬架行程还有一些需要注意的问题。
首先,空气悬架行程的调节需要借助悬架控制系统,这就需要车辆配备相应的传感器和控制单元,增加了系统的复杂性和成本。
其次,空气悬架行程的调节范围和精度受到气压和悬架结构等因素的影响,需要经过精确的设计和调试,以保证行程的稳定和可靠性。
空气悬架行程作为悬架系统的重要参数,对车辆的操控性和乘坐舒适性起着至关重要的作用。