2017_2018学年高中物理第一章碰撞与动量守恒第四节反冲运动教学案粤教版选修3_5
- 格式:doc
- 大小:876.51 KB
- 文档页数:9
第一节物体的碰撞[学习目标] 1.了解生活中的各种碰撞现象,知道碰撞的特点.2.通过实验探究,知道弹性碰撞和非弹性碰撞.一、碰撞特点及分类1.碰撞:碰撞就是两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程.2.碰撞特点(1)相互作用时间短.(2)作用力变化快.(3)作用力峰值大.因此其他外力可以忽略不计.3.碰撞的分类(1)按碰撞前后,物体的运动方向是否沿同一直线可分为:①正碰(对心碰撞):作用前后沿同一条直线.②斜碰(非对心碰撞):作用前后不沿同一条直线.(2)按碰撞过程中机械能是否损失可分为弹性碰撞和非弹性碰撞.[即学即用] 判断下列说法的正误.(1)最早发表有关碰撞问题研究成果的是伽利略.( ×)(2)碰撞过程作用时间很短,相互作用力很大.( √)(3)所有的碰撞,作用前、后物体的速度都在一条直线上.( ×)二、弹性碰撞和非弹性碰撞[导学探究] 演示实验:用如图1所示装置做实验.图1(1)让橡皮球A与另一静止的橡皮球B相碰,两橡皮球的质量相等,会看到什么现象?两橡皮球碰撞前后总动能相等吗?(2)在A、B两球的表面涂上等质量的橡皮泥,再重复实验(1),可以看到什么现象?若两橡皮球粘在一起上升的高度为橡皮球A 摆下时的高度的14,则碰撞前后总动能相等吗? 答案 (1)可看到碰撞后橡皮球A 停止运动,橡皮球B 摆到橡皮球A 开始时的高度;根据机械能守恒定律知,碰撞后橡皮球B 获得的速度与碰撞前橡皮球A 的速度相等,这说明碰撞前后A 、B 两球的总动能相等.(2)可以看到碰撞后两球粘在一起,摆动的高度减小.碰前总动能E k =mgh碰后总动能E k ′=2mg ·h 4=12mgh 因为E k ′<E k ,所以碰撞前后总动能减少.[知识梳理] 按碰撞前后系统的总动能是否损失,可将碰撞分为:(1)弹性碰撞:两个小球碰撞后形变能完全恢复,没有能量损失,即碰撞前后两个小球构成的系统总动能相等,E k1+E k2=E k1′+E k2′.(2)非弹性碰撞:两个小球碰撞后形变不能完全恢复,一部分动能最终转化为其他形式的能(如热能),即碰撞前后两个小球构成的系统总动能不再相等,E k1+E k2>E k1′+E k2′.[即学即用] 判断下列说法的正误.(1)碰撞时形变能够完全恢复的系统动能没有损失.( √ )(2)两物体碰撞后粘在一起运动,系统的动能也可能不损失.( × )(3)两物体碰撞后总动能可能增加.( × )一、弹性碰撞与非弹性碰撞的判断1.碰撞中能量的特点:碰撞过程中,一般伴随机械能的损失,即:E k1′+E k2′≤E k1+E k2.2.碰撞的类型(1)弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能,即碰撞前后两物体构成的系统的动能相等.(2)非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能,总动能减少.(3)完全非弹性碰撞:非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多.例1 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰,试根据以下数据,分析碰撞性质:(1)碰后小球A 、B 的速度均为2 m/s ;(2)碰后小球A 的速度为1 m/s ,小球B 的速度为4 m/s.答案 (1)非弹性碰撞 (2)弹性碰撞解析 碰前系统的动能E k0=12m A v 02=9 J. (1)当碰后小球A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v A 2+12m B v B 2=(12×2×22+12×1×22) J =6 J <E k0,故该碰撞为非弹性碰撞.(2)当碰后v A ′=1 m/s ,v B ′=4 m/s 时,碰后系统的动能 E k ′=12m A v A ′2+12m B v B ′2=(12×2×12+12×1×42) J =9 J =E k0,故该碰撞为弹性碰撞. 针对训练 如图2所示,有A 、B 两物体,m 1=3m 2,以相同大小的速度v 相向运动,碰撞后A 静止,B 以2v 的速度反弹,那么A 、B 的碰撞为( )图2A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .无法判断 答案 A解析 设m 1=3m ,m 2=m碰撞前总动能12m 1v 12+12m 2v 22=2mv 2 碰撞后总动能12m 1v 1′2+12m 2v 2′2=0+12×m (2v )2=2mv 2 因为碰撞前后总动能不变,故为弹性碰撞,A 项正确.二、碰撞模型的拓展例2 如图3所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞.A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是( )图3A .A 开始运动时B .A 的速度等于v 时C .B 的速度等于零时D .A 和B 的速度相等时答案 D解析 方法一:B 和A (包括弹簧)的作用,可以看成广义上的碰撞,两物体(包括弹簧)碰后粘在一起或碰后具有共同速度时,其动能损失最多,故选D.方法二:B 与弹簧作用后,A 加速,B 减速,当A 、B 速度相等时,弹簧最短、弹性势能最大,系统动能损失最多,故D正确.两物体通过弹簧的相互作用可以看成广义上的碰撞,当弹簧最短(两物体速度相等)时相当于完全非弹性碰撞;当弹簧完全恢复原状,两物体分离时相当于弹性碰撞.1.(多选)关于碰撞的特点,下列说法正确的是( )A.碰撞的过程时间极短B.碰撞时,质量大的物体对质量小的物体作用力大C.碰撞时,质量大的物体对质量小的物体作用力和质量小的物体对质量大的物体的作用力相等D.碰撞时,质量小的物体对质量大的物体作用力大答案AC解析两物体发生碰撞,其碰撞时间极短,碰撞时,质量大的物体对质量小的物体作用力和质量小的物体对质量大的物体的作用力是一对相互作用力,大小相等,方向相反,故A、C 正确,B、D错误,故选A、C.2.(多选)两个物体发生碰撞,则( )A.碰撞中一定产生了内能B.碰撞过程中,组成系统的动能可能不变C.碰撞过程中,系统的总动能可能增大D.碰撞过程中,系统的总动能可能减小答案BD解析若两物体发生弹性碰撞,系统的总动能不变;若两物体发生的是非弹性碰撞,系统的总动能会减小,但无论如何,总动能不会增加,所以正确选项为B、D.3.(多选)如图4所示,两个小球A、B发生碰撞,在满足下列条件时能够发生正碰的是( )图4A.小球A静止,另一个小球B经过A球时刚好能擦到A球的边缘B.小球A静止,另一个小球B沿着A、B两球球心连线去碰A球C.相碰时,相互作用力的方向沿着球心连线时D.相碰时,相互作用力的方向与两球相碰之前的速度方向都在同一条直线上答案 BD解析 根据牛顿运动定律,如果力的方向与速度方向在同一条直线上,这个力只改变速度的大小,不能改变速度的方向;如果力的方向与速度的方向不在同一直线上,则速度的方向一定发生变化,所以B 、D 项正确;A 项不能发生一维碰撞;在任何情况下相碰两球的作用力方向都沿着球心连线,因此满足C 项条件不一定能发生一维碰撞.故正确答案为B 、D.4.(多选)如图5甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为m 1和m 2,图乙为它们碰撞前后的s -t 图象.已知m 1=0.1 kg ,m 2=0.3 kg ,由此可以判断,下列说法正确的是( )图5A .碰前m 2静止,m 1向右运动B .碰后m 2和m 1都向右运动C .此碰撞为弹性碰撞D .此碰撞为非弹性碰撞答案 AC解析 由题图乙可以看出,碰前m 1位移随时间均匀增加,m 2位移不变,可知m 2静止,m 1向右运动,故A 是正确的;碰后一个位移增大,一个位移减小,说明运动方向不一致,即B 错误;由乙图可以计算出碰前m 1的速度v 1=4 m/s ,碰后速度v 1′=-2 m/s ,碰前m 2的速度v 2=0,碰后速度v 2′=2 m/s ,m 2=0.3 kg ,碰撞过程中系统损失的机械能ΔE k =12m 1v 12-12m 1v 1′2-12m 2v 2′2=0,因此C 是正确的,D 是错误的.5.质量为1 kg 的A 球以3 m/s 的速度与质量为2 kg 静止的B 球发生碰撞,碰后两球均以1 m/s 的速度一起运动,则两球的碰撞属于________类型的碰撞,碰撞过程中损失了________ J 动能.答案 完全非弹性碰撞 3解析 由于两球碰后速度相同,没有分离,因此两球的碰撞属于完全非弹性碰撞,在碰撞过程中损失的动能为ΔE k =12m A v 2-12(m A +m B )v 12=(12×1×32-12×3×12) J =3 J.。
第四节反冲运动[学习目标] 1.了解反冲运动的概念及反冲运动的一些应用.2。
知道反冲运动的原理.3。
会应用动量守恒定律解决反冲运动问题.(重点、难点)4。
了解火箭的工作原理及决定火箭最终速度大小的因素.一、反冲运动1.定义根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫做反冲.2.反冲原理反冲运动的基本原理是动量守恒定律,如果系统的一部分获得了某一方向的动量,系统的其他部分就会在这一方向的反方向上获得同样大小的动量.3.公式若系统的初始动量为零,则动量守恒定律的形式变为mv+(M-m)v′=0,此式表明,做反冲运动的两部分的动量大小相等、方向相反,而它们的速率与质量成反比.二、火箭1.原理火箭的飞行应用了反冲的原理,靠喷出气流的反冲作用来获得巨大速度.2.影响火箭获得速度大小的因素一是喷气速度,二是火箭喷出物质的质量与火箭本身质量之比.喷气速度越大,质量比越大,火箭获得的速度越大.1.正误判断(正确的打“√”,错误的打“×")(1)做反冲运动的两部分的动量一定大小相等,方向相反.(√)(2)一切反冲现象都是有益的.(×)(3)章鱼、乌贼的运动利用了反冲的原理.(√)(4)火箭点火后离开地面向上运动,是地面对火箭的反作用力作用的结果.(×)(5)在没有空气的宇宙空间,火箭仍可加速前行.(√)2.一人静止于光滑的水平冰面上,现欲向前运动,下列可行的方法是()A.向后踢腿B.手臂向后甩C.在冰面上滚动D.向后水平抛出随身物品D [A、B两项中人与外界无作用,显然不行;对于C项,由于冰面光滑,也不行;对于D选项,人向后水平抛出随身物品的过程中,得到随身物品的反作用力,即利用了反冲运动的原理,从而能向前运动.]3.静止的实验火箭,总质量为M,当它以对地速度v0喷出质量为Δm的高温气体后,火箭的速度为()A.错误!B.-错误!C。
1.4 反冲运动课堂互动三点剖析一、反冲运动1.反冲运动的产生是系统内力作用的结果,两个相互作用的物体A 、B 组成的系统,A 对B 的作用力使B 获得某一方向的动量,B 对A 的反作用力使A 获得相反方向的动量,从而使A 沿着与B 的运动方向相反的方向做反冲运动.2.实际遇到的反冲运动问题通常有以下三种:(1)系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题.(2)系统虽然受到外力作用,但内力远远大于外力,外力可以忽略,也可以用动量守恒定律解决反冲运动问题.(3)系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变,可以用该方向上动量守恒解决反冲运动问题.3.动量守恒定律研究的是相互作用的物体总动量问题,如果合外力为零,则总动量守恒,但每个物体的动量都要变化,这是由于相互作用的内力对各个物体都有冲量,据动量定理Ft=Δp,F=tp ∆,如果Δp 为某个常数,若时间t 非常小,则F 很大,这时候即使合外力不为零,由于外力远小于内力,可以忽略外力的影响,认为系统动量守恒;但如果时间t 达不到非常小,内力不是非常大,不满足外力远小于内力,则不能认为动量守恒.例如两物体碰撞后结合在一起,由于作用时间极短,即使在不光滑的平面上,也认为动量守恒,但如果两物体间有一根轻质弹簧,两物体通过弹簧相互作用而达到共同速度,这个作用时间就比较长,不满足内力远大于外力的条件,就不能认为动量守恒了.二、爆炸爆炸的过程满足动量守恒的条件,只是在炮弹炸开的那一瞬间,才有内力远大于外力,当爆炸结束以后就不再存在这个很大的内力,则系统动量不再守恒.前述碰撞过程机械能不变或有损失,不可能增大,但爆炸过程机械能可能会增加,这是因为火药爆炸产生的能量有可能转化为机械能.当一个静止的物体爆炸后,炸成两块的质量分别是m 1、m 2,速度分别是v 1、v 2,爆炸消耗的化学能E 全部转化成动能,则有:m 1v 1=m 2v 2 E=2222112121v m v m + 各个击破【例1】 如图1-4-2所示,质量为M 的炮车静止在水平面上,炮筒与水平方向夹角为θ,当炮车发射一枚质量为m 、对地速度为v 0的炮弹后,炮车的反冲速度为________________.图1-4-2解析:在炮弹发射过程中,炮车所受阻力远小于内力,故系统在水平方向动量守恒. 设炮车速度为v ,则由水平方向动量守恒可得0=Mv+mv 0cos θ解得v=Mm v θcos 0-,负号说明炮车是后退的. 答案:Mm v θcos 0 类题演练一个连同装备共有100 kg 的宇航员,脱离宇宙飞船后,在离飞船45 m 处与飞船处于相对静止状态.装备中有一个高压气源,能以50 m/s 的速度喷出气体.宇航员为了能在10 min 时间内返回飞船,他需要在开始返回的瞬间一次性向后喷出多少气体?解析:宇航员喷出气体获得反冲速度后匀速回到飞船,由位移与时间可知喷气后飞船的速度,据动量守恒定律可求喷出气体的质量.设题中所给数据为M=100 kg,s=45 m,v 1=50 m/s,时间t=10 min=600 s,喷出气体的质量为m ,喷气后宇航员获得的速度是v 2,由动量守恒得(M-m )v 2=mv 1由运动学公式得v 2=ts .由以上两式解得m=0.15 kg. 答案:0.15 kg变式提升一个士兵,坐在皮划艇上,他连同装备和皮划艇的总质量共120 kg.这个士兵用自动枪在2 s 时间内沿水平方向射出10发子弹,每颗子弹质量10 g ,子弹离开枪口时相对地面的速度都是800 m/s.射击前皮划艇是静止的.(1)射击后皮划艇的速度是多大?(2)士兵射击时枪所受到的平均反冲作用力有多大?解析:每次发射子弹过程中,对人、艇、枪及子弹组成的系统总动量守恒,连续发射十颗子弹和一次性发射十颗子弹结果相同.(1)设题中所给数据M=120 kg,t=2 s,m=0.01 kg,v 1=800 m/s,射击后皮划艇的速度是v 2,由动量守恒得:10mv 1=(M-10m)v 2解得v 2=0.67 m/s.(2)设平均反冲作用力为F ,在该力作用下人、艇、枪组成系统做匀加速运动,由牛顿第二定律F=Ma,及运动学公式v=at,解得F=40.2 N.答案:(1)0.67 m/s (2)40.2 N【例2】 一个在空中飞行的手雷,以水平速度v 飞经离地面高为h 的轨道最高点时,炸裂成A 、B 两块,A 、B 质量之比为n (少量炸药质量不计).之后,B 正好自由下落,求A 的落地点比不发生爆炸时手雷的落地点远多少?爆炸前后机械能变化了多少?解析:爆炸前后动量守恒,有mv=m A v A得v A =v nn n nm mv m mv A )1(1+=+= 爆炸后,A 以v A 做平抛运动,运动时间t=gh 2 射程的增加量Δs 为Δs=(v A -v)t=(v n n 1+-v)g h 2=g h nv 2.此题爆炸前后可认为动量守恒,但机械能并不守恒,ΔE=22222121)1(121mv nmv v n n n nm =-++.机械能是增加的,这一点与碰撞过程不同. 答案:g h n v 2 增加 221mv n。
第四节反冲运动班级姓名学号成绩【自主学习】一、学习目标1.知道什么是反冲运动,能举出一些生活中的反冲运动的实例2.理解反冲运动的原理,能够应用动量守恒定律解决反冲运动问题3.知道火箭的工作原理及决定火箭最终速度大小的因素二、重点难点1. 理解反冲运动的原理是动量守恒定律2. 火箭飞行最大速度的求解3. “人船模型”,爆炸问题的处理方法三、问题导学1. 什么是反冲运动?反冲运动有什么特点?2. 火箭飞行的最大速度由什么因素决定?3.处理反冲运动时应注意哪些问题?四、自主学习(阅读课本P14-16,《金版学案》P16-17 考点1、2,P11考点3)1. 反冲运动(1)定义:根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向的方向运动,这个现象叫做。
(2)反冲运动的基本原理是定律。
(3)作用前:P = ,作用后: P’= ,则根据动量守恒定律有:即表明此式表明,做反冲运动的两部分的动量大小、方向,而它们的速率与质量成。
2. 火箭(1)火箭的飞行应用了的原理,靠喷出气流的作用来获得巨大速度.(2)影响火箭获得速度大小的因素:一是,二是火箭喷出物质的质量与火箭本身质量之比.喷气速度,质量比,火箭获得的速度越大。
3. 爆炸:爆炸的特点是作用时间,相互作用内力,过程中物体间产生的位移可忽略。
对于外力不会随内力而变化的系统,尽管有外力作用,但仍可以认为其,从机械能角度分析,爆炸时,系统的增加。
五、要点透析对反冲运动的理解1.反冲运动的三个特点(1)物体的不同部分在内力作用下向相反方向运动。
(2)反冲运动中,相互作用的内力一般情况下远大于外力,所以可以用动量守恒定律来处理。
(3)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加。
2.反冲运动的处理方法(1)反冲运动过程中系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律分析解决问题。
实验验证动量守恒定律对应学生用书页码一、实验目的1.验证一维碰撞中的动量守恒。
2.探究一维弹性碰撞的特点。
二、实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p =m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒。
三、实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。
方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。
方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案四:斜槽,大小相等质量不同的小钢球两个,重垂线一条,白纸,复写纸,天平一台,刻度尺,圆规。
四、实验步骤方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量。
(2)安装:正确安装好气垫导轨。
(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量,②改变滑块的初速度大小和方向)。
(4)验证:一维碰撞中的动量守恒。
方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2。
(2)安装:把两个等大小球用等长悬线悬挂起来。
(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰。
(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。
(5)改变条件:改变碰撞条件,重复实验。
(6)验证:一维碰撞中的动量守恒。
方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量。
(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。
(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。
(4)测速度:通过纸带上两计数点间的距离及时间,由v =ΔsΔt 算出速度。
第四节反冲运动对应学生用书页码1.反冲运动是指一个物体向某一方向射出(或抛出)它的一部分时,这个物体的剩余部分向相反方向运动的现象。
2.反冲运动和碰撞、爆炸相似,相互作用力一般很大,可以用动量守恒定律来处理。
3.火箭的燃料点燃后燃烧生成的高温高压燃气以很大的速度向后喷出,火箭由于反冲运动而向前运动。
4.一个静止的质量为M的不稳定原子核,当它以速度v放出一个质量为m的粒子后,剩余部分的速度为-mvM-m。
对应学生用书页码1.定义当原来静止或运动的物体向某一方向射出(或抛出)它的一部分时,这个物体的剩余部分将向相反方向运动,这种运动叫反冲运动。
2.反冲运动的特点(1)物体的不同部分在内力作用下向相反方向运动。
(2)反冲运动和碰撞、爆炸相似,相互作用力一般很大,可以用动量守恒定律来处理。
(3)反冲运动中常伴有其他形式的能转化为机械能,系统的总能量增加。
3.求解反冲运动应注意的问题(1)速度的反向性对于原来静止的系统,当向某一方向射出(或抛出)它的一部分时,剩余部分的反冲是相对于抛出部分来说,两者运动方向必然相反。
进行计算时,可任意规定某一部分的运动方向为正方向,则反方向的另一部分的速度应取负值。
(2)速度的同时性反冲运动问题中,根据动量守恒定律列出的方程中同一状态的速度应是同时的。
(3)速度的相对性反冲运动中,有时遇到的速度是相互作用的两物体间的相对速度。
由于动量守恒定律中要求速度为对同一惯性系的速度,即对地的速度,因此应先将相对速度转换成对地的速度后,再列动量守恒定律方程。
(4)变质量问题在反冲运动中还常遇到变质量物体的运动,如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短时间内喷出的所有气体为研究对象,取相互作用的这个过程为研究过程来进行研究。
(1)反冲运动实际上是相互作用的物体之间作用力与反作用力产生的结果。
(2)反冲运动有利有弊,有利的一方面我们可以应用,比如,反击式水轮机、喷气式飞机、火箭、农田喷灌、宇航员在太空行走等;反冲运动不利的地方要尽力去排除,比如,枪、炮在射击时产生的反冲运动对射击的准确性有影响等。
实验:验证动量守恒定律[学习目标] 1.掌握验证动量守恒定律的方法和基本思路.2.掌握直线运动物体速度的测量方法.一、实验目的验证碰撞中的动量守恒定律二、实验原理为了使问题简化,这里研究两个物体的碰撞,且碰撞前两物体沿同一直线运动,碰撞后仍沿这一直线运动.设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1′、v2′,如果速度与我们规定的正方向相同取正值,相反取负值.根据实验求出两物体碰前动量p=m1v1+m2v2,碰后动量p′=m1v1′+m2v2′,看p与p′是否相等,从而验证动量守恒定律.三、实验设计实验设计需要考虑的问题:(1)如何保证碰撞前后两物体速度在一条直线上.(2)如何测定质量和速度.①测量质量用天平.②测定碰撞前后的速度,这是实验成功的关键.四、实验案例气垫导轨上的实验器材:气垫导轨、气泵、光电计时器、天平等.气垫导轨装置如图1所示,由导轨、滑块、挡光片、光电门等组成,在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上(如图2所示,图中气垫层的厚度放大了很多倍),这样大大减小了由摩擦产生的影响.图1 图2设Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间,则v =Δx Δt .五、实验步骤1.调节气垫导轨,使其水平.是否水平可按如下方法检查:打开气泵后,导轨上的滑块应该能保持静止.2.按说明书连接好数字计时器与光电门.3.如图3所示,把中间夹有弯形弹簧片的两滑块置于光电门中间保持静止,烧断拴弹簧片的细线,测出两滑块的质量和速度,将实验结果记入设计好的表格中.图34.如图4所示,在滑块上安装好弹性碰撞架.将两滑块从左、右以适当的速度经过光电门后在两光电门中间发生碰撞,碰撞后分别沿各自碰撞前相反的方向运动再次经过光电门,光电计时器分别测出两滑块碰撞前后的速度.测出它们的质量后,将实验结果记入相应表格中.图45.如图5所示,在滑块上安装好撞针及橡皮泥,将装有橡皮泥的滑块停在两光电门之间,装有撞针的滑块从一侧经过光电门后两滑块碰撞,一起运动经过另一光电门,测出两滑块的质量和速度,将实验结果记入相应表格中.图56.根据上述各次碰撞的实验数据验证碰撞前后的动量是否守恒.实验数据记录表例1某同学利用气垫导轨做验证碰撞中的动量守恒的实验;气垫导轨装置如图6所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.图6(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③接通光电计时器;④把滑块2静止放在气垫导轨的中间;⑤滑块1挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与左侧固定弹簧的滑块2碰撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门2后依次被制动;⑦读出滑块通过两个光电门的挡光时间分别为滑块1通过光电门1的挡光时间Δt1=10.01ms ,通过光电门2的挡光时间Δt 2=49.99 ms ,滑块2通过光电门2的挡光时间Δt 3=8.35 ms ;⑧测出挡光片的宽度d =5 mm ,测得滑块1(包括撞针)的质量为m 1=300 g ,滑块2(包括弹簧)的质量为m 2=200 g ; (2)数据处理与实验结论:①实验中气垫导轨的作用是a.________b .________.②碰撞前滑块1的速度v 1为________m/s ;碰撞后滑块1的速度v 2为______m/s ;滑块2的速度v 3为______m/s ;(结果保留两位有效数字)③在误差允许的范围内,通过本实验,同学们可以探究出哪些物理量是不变的?通过对实验数据的分析说明理由.(至少回答2个不变量). a .____________b .____________.答案 ①a.大大减小了因滑块和导轨之间的摩擦而引起的误差.b.保证两个滑块的碰撞是一维的.②0.50 0.10 0.60③a.系统碰撞前后总动量不变.b.碰撞前后总动能不变.(c.碰撞前后质量不变.) 解析 ①a.大大减小了因滑块和导轨之间的摩擦而引起的误差.b.保证两个滑块的碰撞是一维的.②滑块1碰撞之前的速度v 1=d Δt 1=5×10-310.01×10-3 m/s ≈0.50 m/s ;滑块1碰撞之后的速度v 2=d Δt 2=5×10-30.049 9m/s ≈0.10 m/s ;滑块2碰撞后的速度v 3=d Δt 3=5×10-38.35×10-3 m/s ≈0.60 m/s ;③a.系统碰撞前后总动量不变.因为系统碰撞前的动量m 1v 1=0.15 kg·m/s,系统碰撞后的动量m 1v 2+m 2v 3=0.15 kg·m/s b .碰撞前后总动能不变.因为碰撞前的总动能E k1=12m 1v 12=0.037 5 J ,碰撞之后的总动能E k2=12m 1v 22+12m 2v 32=0.037 5J ,所以碰撞前后总动能相等. c .碰撞前后质量不变.例2 某同学设计了一个用打点计时器探究碰撞中动量变化的规律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动,他设计的具体装置如图7所示.在小车A 后连着纸带,电磁打点计时器电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.图7(1)若已得到打点纸带如图8所示,并测得各计数点间的距离标在图上,A 为运动起始的第一点.则应选________段来计算小车A 的碰前速度,应选______段来计算小车A 和小车B 碰后的共同速度(填“AB ”“BC ”“CD ”或“DE ”).图8(2)已测得小车A 的质量m A =0.40 kg ,小车B 的质量m B =0.20 kg ,由以上的测量结果可得:碰前两小车的总动量为______ kg·m/s,碰后两小车的总动量为______ kg·m/s. 答案 (1)BC DE (2)0.420 0.417解析 (1)因小车做匀速运动,应取纸带上打点均匀的一段来计算速度,碰前BC 段点距相等,碰后DE 段点距相等,故取BC 段、DE 段分别计算碰前小车A 的速度和碰后小车A 和小车B 的共同速度. (2)碰前小车速度v A =x BC T =10.50×10-20.02×5m/s =1.05 m/s其动量p A =m A v A =0.40×1.05 kg·m/s=0.420 kg·m/s碰后小车A 和小车B 的共同速度v AB =x DE T =6.95×10-20.02×5m/s =0.695 m/s碰后总动量p AB =(m A +m B )v AB =(0.40+0.20)×0.695 kg·m/s=0.417 kg·m/s从上面计算可知:在实验误差允许的范围内,碰撞前后总动量不变.例3 某同学用图9甲所示的装置通过半径相同的A 、B 两球的碰撞来探究动量守恒定律.图中SQ 是斜槽,QR 为水平槽.实验时先使A 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球放在水平槽上靠近末端的地方,让A 球仍从位置G 由静止滚下,和B 球碰撞后,A 、B 两球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中O 点是水平槽末端R 在记录纸上的垂直投影点.B 球落点痕迹如图乙所示,其中米尺水平放置,且平行于G 、R 、O 所在平面,米尺的零点与O 点对齐. (1)碰撞后B 球的水平射程ON 应取为________ cm.图9(2)该同学实验数据记录如表所示,设两球在空中运动的时间为t ,请根据数据求出两球碰撞前的动量之和是________,两球碰撞后的动量之和是________,由此得出的结论是________________________________________________________________________.答案 (1)65.2 (2)t t误差允许的范围内,碰撞前后动量守恒定律成立解析 (1)水平射程是将10个不同的落点用尽量小的圆圈起来,其圆心即为平均落点,从题图乙上可读出约为65.2 cm.(2)A 、B 两球在碰撞前后都做平抛运动,高度相同,在空中运动的时间相同,而水平方向都做匀速直线运动,其水平射程等于速度与落地时间t 的乘积. 碰撞前A 球的速度为v A =OP t =47.9 cm t,碰撞前质量与速度的乘积之和为m A v A =20.0 g×47.9 cm t =958.0 g·cmt.碰撞后A 球的速度为v A ′=OM t =15.2 cmt,碰撞后B 球的速度为v B ′=ON t =65.2 cm t.碰撞后动量之和为m A v A ′+m B v B ′=20.0 g×15.2 cm t +10.0 g×65.2 cm t =956.0 g·cmt.一、选择题(1题为单选题,2~3题为多选题)1.用气垫导轨进行验证碰撞中的动量守恒的实验时,不需要测量的物理量是( )A.滑块的质量B.挡光时间C.挡光片的宽度D.光电门的高度答案 D2.在利用气垫导轨探究动量守恒定律实验中,哪些因素可导致实验误差( )A.导轨安放不水平B.小车上挡光板倾斜C.两小车质量不相等D.两小车碰后粘合在一起答案AB解析导轨不水平,小车速度将受重力影响.挡光板倾斜会导致挡光板宽度不等于挡光阶段小车通过的位移,导致速度计算出现误差.3.若用打点计时器做“探究碰撞中的不变量”的实验,下列操作正确的是( )A.相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了改变两车的质量B.相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后粘在一起C.先接通打点计时器的电源,再释放拖动纸带的小车D.先释放拖动纸带的小车,再接通打点计时器的电源答案BC解析相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后两车能粘在一起共同运动,这种情况能得到能量损失很大的碰撞,选项A错,B正确;应当先接通打点计时器的电源,再释放拖动纸带的小车,否则因运动距离较短,小车释放以后再接通电源,不容易得到实验数据,故选项C正确,D错误.二、非选择题4.在用气垫导轨做“验证碰撞中的动量守恒”实验时,左侧滑块质量m1=170 g,右侧滑块质量m2=110 g,挡光片宽度d为3.00 cm,两滑块之间有一压缩的弹簧片,并用细线连在一起,如图1所示.开始时两滑块静止,烧断细线后,两滑块分别向左、右方向运动.挡光片通过光电门的时间分别为Δt1=0.32 s,Δt2=0.21 s.则两滑块的速度大小分别为v1′=______m/s,v2′=______m/s(保留三位有效数字).烧断细线前m1v1+m2v2=______kg·m/s,烧断细线后m1v1′+m2v2′=________kg·m/s.可得到的结论是__________________________.(取向左为速度的正方向)图1答案0.094 0.143 0 2.5×10-4在实验允许的误差范围内,碰撞前后两滑块的总动量保持不变解析两滑块速度v 1′=d Δt 1=3.00×10-20.32m/s ≈0.094 m/s ,v 2′=-d Δt 2=-3.00×10-20.21 m/s ≈-0.143 m/s ,烧断细线前m 1v 1+m 2v 2=0烧断细前后m 1v 1′+m 2v 2′=(0.170×0.094-0.110×0.143) kg·m/s=2.5×10-4kg·m/s, 在实验允许的误差范围内,m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.5.用如图2所示装置验证碰撞中的动量守恒,气垫导轨水平放置,挡光板宽度为9.0 mm ,两滑块被弹簧(图中未画出)弹开后,左侧滑块通过左侧光电计时器,记录时间为0.040 s ,右侧滑块通过右侧光电计时器,记录时间为0.060 s ,左侧滑块质量为100 g ,左侧滑块的m 1v 1=________ g·m/s,右侧滑块质量为150 g ,两滑块的总动量m 1v 1+m 2v 2=________g·m/s.(取向左为速度的正方向)图2答案 22.5 0解析 左侧滑块的速度为:v 1=d 1t 1=9.0×10-30.040m/s =0.225 m/s则左侧滑块的m 1v 1=100 g×0.225 m/s=22.5 g·m/s 右侧滑块的速度为:v 2=-d 2t 2=-9.0×10-30.060m/s =-0.15 m/s则右侧滑块的m 2v 2=150 g×(-0.15 m/s)=-22.5 g·m/s 因m 1v 1与m 2v 2等大、反向,两滑块的总动量m 1v 1+m 2v 2=0.6.如图3所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和带固定挡板的质量都是M 的滑块A 、B ,做探究碰撞中的不变量的实验:图3(1)把两滑块A 和B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 和B ,在A 和B 的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩状态.(2)按下电钮使电动卡销放开,同时启动两个记录两滑块运动时间的电子计时器,当A 和B 与挡板C 和D 碰撞的同时,电子计时器自动停表,记下A 运动至C 的时间t 1,B 运动至D 的时间t 2.(3)重复几次取t 1、t 2的平均值. 请回答以下几个问题:①在调整气垫导轨时应注意___________________________________________________; ②应测量的数据还有_________________________________________________________; ③作用前A 、B 两滑块的速度与质量乘积之和为________________,作用后A 、B 两滑块的速度与质量乘积之和为________________.(用测量的物理量符号和已知的物理量符号表示) 答案 ①用水平仪测量并调试使得气垫导轨水平 ②A 至C 的距离L 1、B 至D 的距离L 2 ③0 (M +m )L 1t 1-M L 2t 2或M L 2t 2-(M +m )L 1t 1解析 ①为了保证滑块A 、B 作用后做匀速直线运动,必须使气垫导轨水平,需要用水平仪加以调试.②要求出A 、B 两滑块在电动卡销放开后的速度,需测出A 至C 的时间t 1和B 至D 的时间t 2,并且要测量出两滑块到两挡板的运动距离L 1和L 2,再由公式v =x t求出其速度.③设向左为正方向,根据所测数据求得两滑块的速度分别为v A =L 1t 1,v B =-L 2t 2.碰前两滑块静止,v =0,速度与质量乘积之和为0;碰后两滑块的速度与质量乘积之和为(M +m )L 1t 1-M L 2t 2.若设向右为正方向,同理可得碰后两滑块的速度与质量的乘积之和为M L 2t 2-(M +m )L 1t 1. 7.某班物理兴趣小组选用如图4所示装置来“探究碰撞中的动量守恒”.将一段不可伸长的轻质小绳一端与力传感器(可以实时记录绳所受的拉力)相连固定在O 点,另一端连接小钢球A ,把小钢球拉至M 处可使绳水平拉紧.在小钢球最低点N 右侧放置有一水平气垫导轨,气垫导轨上放有小滑块B (B 上安装宽度较小且质量不计的遮光板)、光电门(已连接数字毫秒计).当地的重力加速度为g .图4某同学按上图所示安装气垫导轨、滑块B (调整滑块B 的位置使小钢球自由下垂静止在N 点时与滑块B 接触而无压力)和光电门,调整好气垫导轨高度,确保小钢球A 通过最低点时恰好与滑块B 发生正碰.让小钢球A 从某位置静止释放,摆到最低点N 与滑块B 碰撞,碰撞后小钢球A 并没有立即反向,碰撞时间极短.(1)为完成实验,除了毫秒计读数Δt 、碰撞前瞬间绳的拉力F 1、碰撞结束瞬间绳的拉力F 2、滑块B 的质量m B 和遮光板宽度d 外,还需要测量的物理量有________. A .小钢球A 的质量m A B .绳长LC .小钢球从M 到N 运动的时间(2)滑块B 通过光电门时的瞬时速度v B =________.(用题中已给的物理量符号来表示) (3)实验中需要探究的表达式为________. 答案 (1)AB (2)dΔt(3)F 1m A L -m 2A gL =F 2m A L -m 2A gL +m BdΔt解析 滑块B 通过光电门时的瞬时速度v B =dΔt. 根据牛顿第二定律得:F 1-m A g =m A v21L .F 2-m A g =m A v 22L.由m A v 1=m A v 2+m B v B 得F 1m A L -m 2A gL =F 2m A L -m 2A gL +m BdΔt.所以还需要测量小钢球A 的质量m A 以及绳长L .百度文库是百度发布的供网友在线分享文档的平台。
第四节反冲运动对应学生用书页码P10 1.反冲运动是指一个物体向某一方向射出(或抛出)它的一部分时,这个物体的剩余部分向相反方向运动的现象。
2.反冲运动和碰撞、爆炸相似,相互作用力一般很大,可以用动量守恒定律来处理。
3.火箭的燃料点燃后燃烧生成的高温高压燃气以很大的速度向后喷出,火箭由于反冲运动而向前运动。
4.一个静止的质量为M的不稳定原子核,当它以速度v放出一个质量为m的粒子后,剩余部分的速度为-mvM-m。
对应学生用书页码P101.定义当原来静止或运动的物体向某一方向射出(或抛出)它的一部分时,这个物体的剩余部分将向相反方向运动,这种运动叫反冲运动。
2.反冲运动的特点(1)物体的不同部分在内力作用下向相反方向运动。
(2)反冲运动和碰撞、爆炸相似,相互作用力一般很大,可以用动量守恒定律来处理。
(3)反冲运动中常伴有其他形式的能转化为机械能,系统的总能量增加。
3.求解反冲运动应注意的问题(1)速度的反向性对于原来静止的系统,当向某一方向射出(或抛出)它的一部分时,剩余部分的反冲是相对于抛出部分来说,两者运动方向必然相反。
进行计算时,可任意规定某一部分的运动方向为正方向,则反方向的另一部分的速度应取负值。
(2)速度的同时性反冲运动问题中,根据动量守恒定律列出的方程中同一状态的速度应是同时的。
(3)速度的相对性反冲运动中,有时遇到的速度是相互作用的两物体间的相对速度。
由于动量守恒定律中要求速度为对同一惯性系的速度,即对地的速度,因此应先将相对速度转换成对地的速度后,再列动量守恒定律方程。
(4)变质量问题在反冲运动中还常遇到变质量物体的运动,如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短时间内喷出的所有气体为研究对象,取相互作用的这个过程为研究过程来进行研究。
(1)反冲运动实际上是相互作用的物体之间作用力与反作用力产生的结果。
(2)反冲运动有利有弊,有利的一方面我们可以应用,比如,反击式水轮机、喷气式飞机、火箭、农田喷灌、宇航员在太空行走等;反冲运动不利的地方要尽力去排除,比如,枪、炮在射击时产生的反冲运动对射击的准确性有影响等。
1.一门旧式大炮,炮身的质量M =1000 kg ,水平发射一枚质量是2.5 kg 的炮弹,如果炮弹从炮口飞出时的速度是600 m/s ,求炮身后退的速度大小。
解析:发射炮弹过程中,炮身和炮弹组成的系统动量守恒,设炮弹飞出的方向为正方向,则得:Mv 1+mv 2=0故v 1=-mv 2M =-2.5×6001000 m/s =-1.5 m/s负号表示炮后退的方向为炮弹飞出的反方向。
答案:1.5 m/s两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
这样的问题归为“人船模型”问题。
2.处理“人船模型”问题的关键(1)利用动量守恒,确定两物体速度关系,再确定两物体通过的位移关系。
由于动量守恒,所以任一时刻系统的总动量为零,动量守恒式可写成m 1v 1=m 2v 2的形式(v 1、v 2为两物体的瞬时速率),此式表明任意时刻的瞬时速率都与各物体的质量成反比。
所以全过程的平均速度也与质量成反比。
进而可得两物体的位移大小与各物体的质量成反比。
即s 1s 2=m 2m 1。
(2)解题时要画出各物体的位移关系草图,找出各长度间的关系。
(1)“人船模型”问题中,两物体的运动特点是:“人”走“船”行、“人”停“船”停。
(2)在求解过程中应讨论的是“人”及“船”的对地位移。
2.(双选)一只小船静止在水面上,一人从船头向船尾走去,设M 船>m 人,不计水的阻力,则( )A .人在船上行走时,人对地的速度大于船对地的速度B .人在船上行走时,人对地的速度小于船对地的速度C .当人停止时,因船的惯性大,所以船要继续后退D .人和船组成的系统动量守恒,且总动量等于零,所以人停止船也停止解析:由于不计水的阻力,船和人组成的系统所受合力为零,动量守恒。
设船和人的速率分别为v 船、v 人,并选船的方向为正方向可得M 船v 船-m 人v 人=0,即M 船v 船=m 人v 人,由M 船>M 人得v 船<v 人;当v 人=0时v 船=0,故选项A 、D 对,B 、C 错。
答案:AD对应学生用书页码P11[例1] 突然喷出质量为m 的气体,喷出的速度为v 0(相对于太空站),紧接着再喷出质量也为m 的另一部分气体,此后火箭获得的速度为v (相对太空站),火箭第二次喷射的气体的速度多大(相对于太空站)?[解析] 火箭与喷出的气体组成的系统动量守恒,设v 0的方向为正方向,则由动量守恒定律可得:第一次喷出气体后:mv 0-(M -m )v 1=0 得v 1=mv 0M -m,方向与正方向相反。
第二次喷出气体后:mv 2-(M -2m )v =-(M -m )v 1 得v 2=(M m-2)v -v 0。
[答案] (M m-2)v -v 0(1)实际遇到的反冲运动问题通常有三种情况:①系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题。
②系统虽然受到外力作用,但内力远远大于外力,外力可忽略,也可以用动量守恒定律解决反冲运动问题。
③系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变。
可以用该方向上动量的守恒解决反冲运动问题。
(2)如果已知条件是物体间的相对速度,注意将物体的相对速度转化为绝对速度。
如果明确了各速度的方向,则关于相对速率可确定为两种情况:当两者同向时,相对速率为两者速率之差;两者反向时,相对速率为两者速率之和。
这样可将矢量式转化为标量式。
1.一个静止的质量为M 的不稳定原子核,放射出一个质量为m 的粒子,粒子离开原子核时相对原子核的速度为v 0,则原子核剩余部分的速率是多少?解析:由于放射过程极短,放射过程中其他外力的冲量均可不计,整个原子核系统动量守恒,设剩余部分对地的反冲速率为v ′,则粒子的对地速率v =v 0-v ′。
由于原子核原来静止,故后来粒子的动量大小等于剩余部分的动量大小,即有m (v 0-v ′)=(M -m )v ′,得v ′=mMv 0。
答案:m Mv 0[例2] 如图1-4-1所示,长为L 、质量为m 1的小船停在静水中,一个质量为m 2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?[解析] 选人和船组成的系统为研究对象,由于不计水的粘滞阻力,故人从船头走到船尾的过程中,系统在水平方向上不受外力作用,所以水平方向动量守恒,设此过程中船的位移为s 1,人的位移为为s 2,则由平均动量守恒有:0=m 1s 1-m 2s 2又由s 1+s 2=L 解得:s 1=m 2L m 1+m2,s 2=m 1Lm 1+m 2。
图1-4-1[答案]m2Lm1+m2m1Lm1+m2人船模型的问题总结归纳(1)条件:总动量(或某一方向上的总动量)为零。
(2)特点:“人走船走,人停船停”。
(3)规律:人与船的位移、速度大小均与人、船的质量成反比,两者的对地位移之和等于两者的相对位移。
2.质量为100 kg的小船载有质量分别为m1=40 kg、m2=60 kg的甲、乙两个人静止在船上,当两人从小船两头均以4 m/s(相对于地面)的速度反向水平跃入水中,这时船的速度大小方向如何?解析:小船、甲、乙构成的系统动量守恒,设船的速率为v,以甲跳水的方向为正方向,则0=m甲v甲-m乙v乙+m船v解得v=0.8 m/s即船的速度大小为0.8 m/s ,方向与甲跳水的方向相同。
答案:船的速度大小为0.8 m/s,方向与甲跳水的方向相同。
[对应课时跟踪检测 四 ] 1.下列不属于反冲运动的是( )A.喷气式飞机的运动B.直升机的运动C.火箭的运动D.反击式水轮机的运动解析:直升机运动是飞机螺旋桨与外部空气作用的结果,不属于反冲运动。
答案:B2.如图1所示,质量M =100 kg 的小船静止在水面上,船两端站着m 甲=40 kg ,m 乙=60 kg 的两个游泳者,在同一直线上分别以相对于岸3 m/s 的水平速度跃入水中,则小船以后的运动方向和速度为( )A .向右,小于1 m/sB .向左,小于1 m/sC .向右,大于1 m/sD .向左,大于1 m/s解析:选向左为正方向,由船和两个游泳者组成系统的动量守恒可得:m 甲v 甲+m 乙v 乙+Mv =0得v =- m 甲v 甲+m 乙v 乙 M =- 40×3-60×3100m/s=0.6 m/s 。
故选项B 对。
答案:B3.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( ) A .燃料燃烧推动空气,空气反作用力推动火箭B .火箭发动机将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C .火箭吸入空气,然后向后推出,空气对火箭的反作用力推动火箭D .火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭解析:火箭工作的原理是利用反冲运动,是火箭燃料燃烧产生的高温高压燃气从尾喷管迅速喷出时,使火箭获得的反冲速度,故选项B 对。
答案:B4.A 、B 两船的质量均为M ,它们都静止在平静的湖面上,当A 船上质量为M2的人以水平速度v 从A 船跳到B 船,再从B 船跳回A 船。
设水对船的阻力不计,经多次跳跃后,人最终跳到B 船上,则下列说法错误的是( )A .A 、B 两船的速度大小之比为3∶2 B .A 、B (包括人)动量大小之比为1∶1C .A 、B (包括人)动量之和为零D .因跳跃次数未知,故以上答案均无法确定解析:选A 船、B 船和人这三个物体为一系统,则它们的初始总动量为0。
由动量守恒定律可知,系统以后的总动量将一直为0。
选最终B 船的运动方向为正方向,则由动量守恒定律可得:0=(M +M2)v B +Mv A ,解得:v B =-23v A 。
所以,A 、B 两船的速度大小之比为3∶2,选项A 正确。
A 和B (包括人)的动量大小相等,方向相反,动量大小之比为1∶1,选项B 正确。
由于系统的总动量始终守恒(为零),故A 、B (包括人)动量之和也始终为零,选项C 正确。
答案:D5.一小型火箭在高空绕地球做匀速圆周运动,若其沿运动方向的相反方向射出一物体P ,不计空气阻力,则( )A .火箭一定离开原来轨道运动B .P 一定离开原来轨道运动C .火箭运动半径可能不变D .P 运动半径一定减小解析:火箭射出物体P 后,由反冲原理火箭速度变大,所需向心力变大,从而做离心运动离开原来轨道,半径增大A 对,C 错;P 的速率可能减小,可能不变,可能增大,运动也存在多种可能性,所以B 、D 错。