1-线性规划的基本性质
- 格式:ppt
- 大小:1.81 MB
- 文档页数:56
运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50 元/个,椅子售价30 元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4 小时,油漆工2小时。
生产一个椅子需要木工3 小时,油漆工1 小时。
该厂每月可用木工工时为120 小时,油漆工工时为50 小时。
问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。
使用该法求解线性规划问题时,不必把原模型化为标准型。
一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。
线性规划与最优解知识点总结线性规划是运筹学中一种重要的数学优化方法,用于求解一个目标函数在一组约束条件下的最优解。
线性规划在实际问题中有广泛的应用,如生产调度、资源分配、投资决策等。
在本篇文章中,我们将对线性规划与最优解的关键知识点进行总结。
一、线性规划基本概念1. 目标函数:线性规划的目标是通过选择合适的决策变量,使得目标函数达到最小值或最大值。
目标函数通常是一组线性方程。
2. 约束条件:线性规划的决策变量必须满足一组约束条件,这些条件通常是一组线性不等式或等式。
约束条件反映了问题的限制条件。
3. 决策变量:决策变量是线性规划中的未知数,通过对它们的取值进行优化,可以实现目标函数的最优解。
二、线性规划的解法1. 图解法:对于二维及三维的线性规划问题,可以通过绘制约束条件的图形来找到最优解。
最优解通常位于约束条件的交点处。
2. 单纯形法:单纯形法是一种常用的线性规划算法,通过迭代计算,找到目标函数的最优解。
该方法适用于多维的线性规划问题。
三、线性规划的最优解性质1. 最优解的存在性:在满足一定条件下,线性规划问题一定存在最优解。
但是,最优解可能不存在的情况也是存在的,这通常与约束条件的矛盾性有关。
2. 最优解的唯一性:线性规划问题的最优解可能是唯一的,也可能存在多个最优解。
是否存在多个最优解取决于目标函数和约束条件的性质。
四、常见的线性规划问题1. 最大化问题:通过选择合适的决策变量,使得目标函数达到最大值。
这种问题常见于投资决策、利润最大化等领域。
2. 最小化问题:通过选择合适的决策变量,使得目标函数达到最小值。
这种问题常见于成本最小化、资源分配等领域。
3. 平衡问题:在满足一组约束条件的前提下,通过优化决策变量的取值,使得各个变量之间达到平衡。
这种问题常见于供应链管理、产能平衡等领域。
五、线性规划的应用举例1. 生产调度问题:如何合理安排生产任务,使得生产效率最大化。
2. 资源分配问题:如何合理分配资源,使得资源利用率最高。
运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。
”这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x1为进基变量,x3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。
解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
习题一1.1试述LP模型的要素、组成部分及特征。
判断下述模型是否LP模型并简述理由。
(式中x,y为变量;O为参数;a,b,c,d,e为常数。
)(1)max Z=2X∣-X2-3X3X1÷X2+X3=13x i-x2+5X3≤82x1-4X2+3X3≥5x1>O,x2≤O(2)minZ=π⅛*=!EaikXkNbi,i=1,2…,ms∙t∙IA=I[x k≥0Λ=1,2...»w(3)minZ=ZaiXi+»凶∕=l√=ιx i≤c i,i=1,2,...,znS.t.<y j≤d j J≈∖,2,...n%十%≥%∙〃4))maxz=7C.X i JJj=∣EaijXj≤b i+d iΘ,/=1,2,...,∕n5)t.;=1Xj≥OJ=1,2,...«1.2试建立下列问题的数学模型:(1)设备配购问题某农场要购买一批拖拉机以完成每年三季的工作量:春种330公顷,受管130公顷,秋收470公顷。
可供选择的拖拉机型号、单台投资额及工作能力如下表所示。
问配购哪几种拖拉机各几台,才能完成上述每年工作量且使总投资最小?(2)物资调运问题问应如何调运,才能既满足城市用煤需求,又使运输的总费用最少?(3)食谱问题某疗养院营养师要为某类病人拟订本周菜单。
可供选择的蔬菜及其费用和所含营养成分的数量,以及这类病人每周所需另外为了口味的需求,规定一周内所用的卷心菜不多于2份,其它蔬菜不多于4份。
若病人每周需14份蔬菜,问选用每种蔬菜各多少份?(4)下料问题某钢筋车间要用一批长度为10米的钢筋下料制作长度为三米的钢筋90根和长度为四米的钢筋60根,问怎样下料最省?用图解法求解卜.列LP问题:(1)min Z=6XI+4X22x1+X2≥1s.t.3x1+4X2≥1.5x1>O,x2≥O(2)maxz=2.5x1+x23x1+5x2≤155.t.<5x l+2X2≤IOx1≥O,x2≥O(3)maxz=2xι+2x2X∣—X?≥-1-0.5x1+x2≤2x1≥O,x2≥O(4)maxz=Xι+χ2Λ1-x2≥O s.t.∙3x∣—x9≤—3x1≥O,x2≥O(5)minz=2x∣-10x2X1-X2≥O5)t.x1-5X2≥-5x1≥O,x2≥O6))minZ=-IOxi-IIx23x1+4X2≤105x l÷2Λ2≤8s.t.X I-2X2≤2x1≥O,x2≥O1.4把L3题的(3)-(6)化成标准形.1.5把下列LP问题化成标准形。