第二章 线性规划问题解的性质分析
- 格式:ppt
- 大小:763.50 KB
- 文档页数:35
线性规划的解与最优解知识点总结在现实生活和工作中,我们经常会遇到需要最优化某个目标函数的问题。
线性规划作为一种常见的数学优化方法,在各个领域中得到了广泛应用。
它能够帮助我们在一定的约束条件下,找到目标函数的最佳解。
本文将对线性规划的解与最优解的相关知识点进行总结。
1. 基本概念线性规划问题由目标函数和一组线性约束条件组成。
目标函数的形式通常是最大化或最小化一些变量的线性组合,而约束条件则给出了这些变量的取值范围。
线性规划问题的一般形式如下:```max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0```其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件的右边常数,x₁,x₂, ..., xₙ为决策变量。
2. 解的存在性线性规划问题存在三种解的情况:无解、有界解和无界解。
如果约束条件与目标函数之间存在矛盾,例如出现一个约束条件为 a₁₁x₁ +a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,而目标函数的系数为 c₁ > a₁₁,那么这个线性规划问题就没有解。
有界解指的是线性规划问题在满足所有约束条件的情况下,能够找到目标函数的最大值或最小值。
无界解意味着目标函数可以无限制地增大或减小。
3. 最优解的性质线性规划问题的最优解具有以下性质:- 最优解必然出现在可行域的顶点上。
可行域是指所有满足约束条件的解的集合,而顶点则指可行域的边界上的点。
- 如果最优解存在,那么至少存在一个顶点是最优解。
- 如果可行域是有限的,则一定存在一个顶点是最优解。
- 如果最优解存在,那么一定有一条或多条约束条件在最优解上取等号。
第二章线性规划教学目的:了解线性规划的基本概念,理解线性规划最优化原理、单纯形法原理,掌握单纯形法及其矩阵描述、人工变量法、,能够对简单的问题建模。
教学重点:线性规划的含义、性质;线性规划问题的求解方法——图解法、单纯形法。
线性规划模型的建立非标准型线性规划问题转化为标准线性规划问题;线性规划问题的图解法;解的存在情况判断;大M法;两阶段法;单纯形法的矩阵表示;教学难点:单纯形法的求解思想、矩阵表示、对偶理论、对偶单纯形法以及灵敏度分析。
学时: 8学时2.1 线性规划(Linear Programming,LP)问题及其数学模型(1学时)我们应用数学规划模型求解实际问题中,将实际问题抽象成数学模型,然后再对其求解。
2.1.1线性规划问题提出我们用一个简单例子来说明如何建立数学规划问题的数学模型。
例2.1 某家具厂生产桌子和椅子两种家具,有关资料见表2-1。
解:用数学语言来描述生产计划安排问题,这个过程称为建立其数学模型,简称建模。
设:①桌子、椅子生产的数量分别为x1,x2,称为决策变量。
因为产量一般是一个非负数,所以有x1,x2≥0,称非负约束。
②限制条件为木工和油漆工的加工时间约束了产品的生产量x1,x2。
约束如下:4x1+3x2≤1202x1+x2≤50③生产桌子、椅子x 1,x 2所得总收入为Z ,显然Z =50x 1+30x 2。
我们希望总收入值能达到最大,这个关系用公式表达为max Z =50x 1+30x 2 把上述所有数学公式归纳如下12121212max .0z 50x 30x 4x 3x 120s t 2x x 50x x =++≤⎧⎪+≤⎨⎪≥⎩,这就是一个最大化的线性规划模型。
例 2.2(运输工具的配载问题)有一辆运输卡车,载重2.5t ,容积183m ,用来装载如下的两种货物:箱装件125kg/个、0.43m /个;包装件20kg/个、1.53m /个。
问:如何装配,卡车所装物件个数最多?解 根据题意,设箱装件1x 个,包装件2x 个,那么需要满足条件:体积约束 120.4 1.518x x +≤重量约束 12125202500x x +≤非负约束12,0x x ≥目标要求 max z=12x x +我们对上面的式子稍作整理,便得到下面的形式:max z=12x x +1212120.4 1.518125202500,0x x x x x x +≤⎧⎪+≤⎨⎪≥⎩ 上述两例中所提出的问题,最终都归结为在变量满足线性约束条件的前提下,求使线性目标函数最大或最小的问题,这种问题称为线性规划问题。