线性规划问题解的基本性质和几何意义
- 格式:ppt
- 大小:270.00 KB
- 文档页数:25
第三章线性规划的解法§3.1重点、难点提要一、线性规划问题的图解法及几何意义1.图解法。
线性规划问题采用在平面上作图的方法求解,这种方法称为图解法。
图解法具有简单、直观、容易理解的特点,而且从几何的角度说明了线性规划方法的思路,所以,图解法还有助于了解一般线性规划问题的实质和求解的原理。
(1)图解法适用于求解只有两个或三个变量的线性规划问题,求解的具体步骤为:1)在平面上建立直角坐标系;2)图示约束条件,找出可行域。
具体做法是画出所有约束方程(约束条件取等式)对应的直线,用原点判定直线的哪一边符合约束条件,从而找出所有约束条件都同时满足的公共平面区域,即得可行域。
求出约束直线之间,以及约束直线与坐标轴的所有交点,即可行域的所有顶点;3)图示目标函数直线。
给定目标函数Z一个特定的值k,画出相应的目标函数等值线;4)将目标函数直线沿其法线方向向可行域边界平移,直至与可行域边界第一次相切为止,这个切点就是最优点。
具体地,当k值发生变化时,等值线将平行移动。
对于目标函数最大化问题,找出目标函数值增加的方向(即坐标系纵轴值增大的方向),等值线平行上移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最大值的最优解;对于目标函数最小化问题,找出目标函数值减少的方向(即坐标系纵轴值减少的方向),等值线平行下移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最小值的最优解。
(2)线性规划问题的几种可能结果:1)有唯一最优解;2)有无穷多个最优解;3)无最优解(无解或只有无界解)。
2.重要结论。
(1)线性规划的可行域为一个凸集,每一个可行解对应该凸集中的一个点;(2)每一个基可行解对应可行域的一个顶点。
若可行解集非空,则必有顶点存在,从而,有可行解必有基可行解。
(3)一个基可行解对应约束方程组系数矩阵中一组线性无关的列向量,对于n 个变量m 个约束方程的线性规划问题,基可行解的个数不会超过!!()!m n n m n m C =-。
第二章线性规划教学目的:了解线性规划的基本概念,理解线性规划最优化原理、单纯形法原理,掌握单纯形法及其矩阵描述、人工变量法、,能够对简单的问题建模。
教学重点:线性规划的含义、性质;线性规划问题的求解方法——图解法、单纯形法。
线性规划模型的建立非标准型线性规划问题转化为标准线性规划问题;线性规划问题的图解法;解的存在情况判断;大M法;两阶段法;单纯形法的矩阵表示;教学难点:单纯形法的求解思想、矩阵表示、对偶理论、对偶单纯形法以及灵敏度分析。
学时: 8学时2.1 线性规划(Linear Programming,LP)问题及其数学模型(1学时)我们应用数学规划模型求解实际问题中,将实际问题抽象成数学模型,然后再对其求解。
2.1.1线性规划问题提出我们用一个简单例子来说明如何建立数学规划问题的数学模型。
例2.1 某家具厂生产桌子和椅子两种家具,有关资料见表2-1。
解:用数学语言来描述生产计划安排问题,这个过程称为建立其数学模型,简称建模。
设:①桌子、椅子生产的数量分别为x1,x2,称为决策变量。
因为产量一般是一个非负数,所以有x1,x2≥0,称非负约束。
②限制条件为木工和油漆工的加工时间约束了产品的生产量x1,x2。
约束如下:4x1+3x2≤1202x1+x2≤50③生产桌子、椅子x 1,x 2所得总收入为Z ,显然Z =50x 1+30x 2。
我们希望总收入值能达到最大,这个关系用公式表达为max Z =50x 1+30x 2 把上述所有数学公式归纳如下12121212max .0z 50x 30x 4x 3x 120s t 2x x 50x x =++≤⎧⎪+≤⎨⎪≥⎩,这就是一个最大化的线性规划模型。
例 2.2(运输工具的配载问题)有一辆运输卡车,载重2.5t ,容积183m ,用来装载如下的两种货物:箱装件125kg/个、0.43m /个;包装件20kg/个、1.53m /个。
问:如何装配,卡车所装物件个数最多?解 根据题意,设箱装件1x 个,包装件2x 个,那么需要满足条件:体积约束 120.4 1.518x x +≤重量约束 12125202500x x +≤非负约束12,0x x ≥目标要求 max z=12x x +我们对上面的式子稍作整理,便得到下面的形式:max z=12x x +1212120.4 1.518125202500,0x x x x x x +≤⎧⎪+≤⎨⎪≥⎩ 上述两例中所提出的问题,最终都归结为在变量满足线性约束条件的前提下,求使线性目标函数最大或最小的问题,这种问题称为线性规划问题。
(1)凸集:设有任意两点X(1)、X(2)在某个点集中,其中X(1)≠X(2),如果连接这两点的线段上所有的点也在这个点集之中,则称这个点集为凸集。
凸集定义的另外一种表示形式是:设K是n维欧氏空间的一个点集,若任意两点X(1)∈K、X(2)∈K的连线上一切点X(1) +(1-α)X(2)∈K(0≤α≤1),则称K为凸集。
不符合上述特征的点集不是凸集,称为凹集。
(2)极点或顶点:设K是一个凸集,再令X∈K,如果X不能用不同的两点X(1)∈K、X(2)∈K的线性组合X=X(1) +(1-α)X(2)∈K(0≤α≤1)表示,则称点X是K的一个极点或顶点,其直观意义就是X不是K中任何线段的内点。
(3)基本解和基本可行解:在线性规划问题约束条件方程中,由与约束条件个数相等的若干个系数列向量组成的满秩矩阵叫基本矩阵。
一个有n个变量m个约束(m≤n)的线性规划问题至多可以有Cnm个基本矩阵。
所谓满秩矩阵,就是给这个矩阵作行线性变换不会出现某一行元素全为零的情况(与方程组有关的线性变换不考虑列变换);
所谓矩阵的行线性变换就是给矩阵的某一行元素同乘以一个非零常数或给矩阵的某一行同乘以非零常数后再加到另一行,过程与我们中学学过的解方程组的消元法完全一致。
令不与基本矩阵中列向量对应的变量(这些变量就叫非基变量)为零后,约束方程中剩余的与基本矩阵对应的变量就可唯一求得(这些变量就叫基变量),求得的这个解就叫基本解。
简单的说,就是“通过基本矩阵求得的线性规划问题的解”。