补充:分类计数原理和分布技术原理
- 格式:ppt
- 大小:292.50 KB
- 文档页数:17
分类计数原理与分步计数原理分类计数原理和分步计数原理是组合数学中常用的两种计数方法,它们在解决排列组合问题时起着至关重要的作用。
本文将分别介绍这两种计数原理的概念、应用和相关实例,帮助读者更好地理解和掌握这两种计数方法。
一、分类计数原理。
分类计数原理是指将一个计数问题分解为若干个子问题,然后将各个子问题的计数结果相加,从而得到原问题的计数结果的方法。
通常适用于问题的解决方法可以分为几种不同情况的情况。
例如,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
我们可以分别计算选出1名女生、2名女生和3名女生的情况,然后将它们的计数结果相加,即可得到最终的结果。
二、分步计数原理。
分步计数原理是指将一个计数问题分解为若干个步骤,分别计算每个步骤的计数结果,然后将各个步骤的计数结果相乘,从而得到原问题的计数结果的方法。
通常适用于问题的解决方法可以分为几个步骤的情况。
例如,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
我们可以分别计算选出第一名学生、第二名学生和第三名学生的情况,然后将它们的计数结果相乘,即可得到最终的结果。
三、应用实例。
下面我们通过具体的实例来说明分类计数原理和分步计数原理的应用。
实例1,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
采用分类计数原理,我们可以分别计算选出1名女生、2名女生和3名女生的情况,然后将它们的计数结果相加,即可得到最终的结果。
实例2,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
采用分步计数原理,我们可以分别计算选出第一名学生、第二名学生和第三名学生的情况,然后将它们的计数结果相乘,即可得到最终的结果。
四、总结。
分类计数原理和分步计数原理是解决排列组合问题的两种常用方法,它们在实际问题中有着广泛的应用。
在使用这两种计数原理时,我们需要根据具体的问题特点选择合适的方法,并且要注意计数过程中的细节,以确保得到正确的计数结果。
分类计数原理与分步计数原理一、分类加法计数原理:完成一件事情可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++种不同的方法注:在分类计数原理中,n 类办法中相互独立,无论哪一类办法中的哪一种方法都能独立完成这件事. 例1. 一个书包内有7本不同的小说,另一个书包内有5本不同的教科书,从两个书包中任取一本书的取法有多少种?例2. 在所有的两位数中个位数字比十位数字大的两位数有多少个?(合理分类)二、分步乘法计数原理:完成一件事情需要n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的办法……,做第n 步有m n 种不同的办法,那么完成这件事共有N 种不同的方法.N=n m m m ⨯⨯⨯ 21 注:分步计数原理各步骤相互依存,只有各步骤都完成才能做完这件事.例1. 用0,1,2,3,4排成可以重复的5位数,若中间的三位数字各不相同,首末两位数字相同,这样的5位数共有多少个?例2. (1)8本不同的书,任选3本分给3个同学,每人一本有多少种不同的分法?(2)若将4封信投入3个邮筒,有多少种不同的投法?若3位旅客到4个旅馆住宿,又是多少种住宿方法? 例3. 将红、黄、绿、黑四种颜色涂入图中的五个区域,要求相邻的区域不同色,问有多少种不同的涂色方法?变式训练:1、如图,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域 不能涂同一种颜色,则不同的涂法共有多少种?2、如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有多少种?三、计数原理综合应用作用:计算做一件事完成它的所有不同的方法种数区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 方法:(1)列举数数法:就是完成一件事方法不是很多,一一列举出来,然后一种一种地数,这种方法适用于:数目较少的问题.(2)字典排序法:把所有的字母或数字或其它,按照顺序依次排出来,所有的字母或数字或其它排完后结束.(3)模型法:根据题意构建相关的图形,利用图形构建两个原理的模型.AB C D典型例题分析(先分类再分步.)【例1】 一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?变式训练1 在夏季,一个女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同鞋子,3双不同丝袜,这位女孩夏季某一天去学校上学,有多少种不同的穿法?变式训练2 有不同的中文书7本,不同的英文书5本,不同的法文书3本,若从中选出不属于同一种文字的2本书,共有多少种选法?【例2】 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?变式训练1 火车上有十名乘客,沿途有五个车站,乘客下车的可能方式有多少种?变式训练2 有4种不同溶液倒入5只不同的量杯,如果溶液足够多,每只量杯只能倒入一种溶液,有几种不同倒法?【例3】电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?【例4】d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?【例5】 甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?变式训练1 甲、乙、丙、丁4个人各写1张贺卡,放在一起,各取1张,其中甲、乙、丙不能取自己所写的贺卡,共有多少种不同取法?变式训练2 设有编号①,②,③,④,⑤的5个球和编号为1,2,3,4,5的5个盒子,现将这5个球投入这5个盒子内,要求每个盒子内投入一个球,并且恰好有2个球的编号与盒子的编号相同,则这样的投放方法总数为多少【例6】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答) 654321四、课堂练习1.一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_______________种.若是选取两本书且它们不相同则有_______________种2.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有______种不同的选法.3.一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有__________种.4.从分别写有1,2,3,……,9的九张数字卡片中,抽出两张数字和为奇数的卡片,共有_______种不同的抽法.5.从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有______种。
分类计数原理与分步计数原理一、知识精讲分类计数原理与分步计数原理分类计数原理:做一件事,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法 ,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++= 21种不同的办法。
分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同方法,那么完成这件事共有n m m m N ⋅⋅⋅= 21种不同的方法。
特别注意:两个原理的共同点是把一个原始事件分解成若干个分事件来完成。
不同点在于,一个与分类有关,一个与分步有关,如果完成一件事情共有n 类办法,这n 类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。
二、题型剖析例1、把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢?解:(1)不同涂色方法数是:60345=⨯⨯(种)(2)如右图所示,分别用a,b,c,d 记这四块,a 与c 可同色,也可不同色,先考虑给a,c 两块涂色,分两类(1) 给a,c 涂同种颜色共15C 种涂法,再给b 涂色有4种涂法,最后给d 涂色也有4种涂法,由乘法原理知,此时共有4415⨯⨯C 种涂法(2) 给a,c 涂不同颜色共有25A 种涂法,再给b 涂色有3种方法,最后给d 涂色也有3种,此时共有3325⨯⨯A 种涂法 故由分类计数原理知,共有4415⨯⨯C +3325⨯⨯A =260种涂法。
例2、(1)如图为一电路图,从A 到B 共有-___________条不同的线路可通电。
分类计数原理和分步计数原理一、知识梳理1、分类计数原理:完成一件事,有n 类办法,在一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法..........在第n 类办法中有m n 种不同的方法,那么完成这件事共有m m m N n+⋅⋅⋅++=21种不同的方法 对于分类计数原理,我们应该注意以下几点:(1)分类原理又叫加法原理;(2)在分类时,标准要明确:(3)完成这件事的任何一种方法必须属于某一类,并且分别属于不同两类的两种方法都是不同的方法2、分步计数原理完成一件事需要n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的 方法,做第二步有m 2种不同的方法..........做第n 步有m n 种不同的方法,那么完成这件事共有m m m N n∙∙∙= 21 种不同的方法对于分步计数原理我们还要注意以下几点:(1)分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤完成了,这件事才算完成,所以分步计数原理原理又称乘法原理;(2)分步时,应根据问题的特点,确定一个分步的标准;(3)分步时还要注意,满足完成一件事必须并且只有连续完成n 个步骤后这件事才算完成例题1、国庆节期间,某家庭欲从甲地去乙地旅游,一天中从甲地有火车3班,有汽车2班可以到达乙地,那么一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?2:一班有学生56人,其中男生有38人,从中选取1名男生和1名女生作代表,参加学校组织的社会调查团,选取代表的方法有多少种?3、在3张卡片的正反两面上,分别写着1和2,4和5,7和8,将它们并排组成三位数,一共能组成多少个不同的三位数?4、二次函数cy+=2,其中{}5,4,3,2,1,0+axbxba,则可以得,∈,c到多少个不同的二次函数?5、用4种不同的颜色给如图所示的图形上色,要求相邻两块涂不同的颜色,共有多少种不同的涂法?6、将3种农务全部种植在下图的5块实验田中,每块试验田种植一种农作物,且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?7、如图,所示的是某城市中M,N两地间整齐的道路网,若规定只能向东或向北两个方向沿图中矩形的边前进,则某人从M地经过A到N地有多少不同的走法?8、把5本书全部借给3名学生,有多少种不同的借法?9、如图所示,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种10、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种11、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A.24种B.18种C.12种D.6种12、三只口袋内袋有大小不同的小球,一只装有5个白色小球,一只装有6个黑色小球,另一只装有7个红色小球,若从三只口袋中取两个不同颜色的小球,共有多少种不同的取法?13、已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在平面直角坐标系中,第一,第二象限内不同点的个数为()A、18B、16C、14D、1014、4个人各写一张贺年卡,放在一起,然后每个人取一张不是自己写的贺年卡,共有多少种不同的取法?15、在所有的两位数中,个位数字比十位数字大的两位数有多少个?16、由0,1,2,3,4,5,6这七个数字可以组成多少个无重复数字的四位偶数?17 、将红、黄、绿、黑四种不同的颜色涂入下图中的5个区域,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?18、用0,1,2,3,4这5个数字可以组成多少个无重复数字的:(1)四位密码?5X4X3X2=120(2)四位数?4X4X3X2=96(3)四位奇数?19、如图所示的5X3个方格中有多少个矩形?20、某单位职工义务献血,在体验合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少不同的选法?21、三人传球,由甲开始发球,并作为第一次传球,经过5次传球后,仍回到甲手中,则不同的传球方式共有()A.6种B.8种C.10种D.16种22、在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植1垄,为有利作物生长,要求A,B两种作物的间隔不少于6垄,则不同的选择方法有多少种?23、四张卡片的正反面分别有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成多少个不同的三位数?24、书架上原来并排放着5张不同的书,现要再插入3本不同的书,不同的插法的种数有多少种?25、某通讯公司推出一组手机卡号码,卡号的前7位数字固定,从0000⨯⨯⨯⨯共10000个号码,⨯⨯⨯⨯⨯到9999⨯⨯⨯⨯⨯规定:凡卡号的后四位带有数字“4”和“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数多少个?。
分类计数原理与分步计数原理在组合数学中,分类计数原理和分步计数原理是最基本的计数原理,它们可以被广泛用于不同的数学和科学领域。
在下文中,我将对这两种原理作出详细解释和讲解,并展示它们如何应用于实际问题。
一、分类计数原理分类计数原理被用于解决一个问题的情况下,将其分为几个子问题,并计算每个子问题的解的数量,然后相加得到问题的总体解决方案。
注重的是,这些子问题应该互不重叠且要考虑清楚它们之间的关系。
例如,我们考虑有一个小学班级,有20位学生,他们的血型各不相同。
计算共有多少种血型组合。
我们可以将这个问题分为4个子问题,代表着不同的血型类型。
对于每个子问题,我们可以使用排列或者组合的方法来计算该血型的数量,然后将每一个子问题的数量相加。
这样,我们就可以得到总体的解决方案。
二、分步计数原理分步计数原理是一种解决复杂问题的方法,它涉及到一个问题的解决过程中很多步骤。
即将一个复杂问题分解成若干个容易解决的子问题,并计算这些子问题的解后,将这些解组合在一起,得到该问题的总体解决方案。
例如,考虑一个盒子里包含5个白色球和3个黑色球。
现在要从盒子里取出两个球,重复取球,求得到的颜色组合。
第一步,从盒子里选取任意一个球,有8种可能性。
第二步,将该球放回盒子中,再次从盒子中取出一个球。
这个步骤中,所选的球可能是白色或者黑色,因此共有2种可能性。
这样,共有8×2=16种可能性。
其中,白球配对的组合有5×4=20个组合,黑球配对的组合有3×2=6个组合。
所以,总共的组合数为20+6=26种可能性。
三、分类计数原理与分步计数原理的应用分类计数原理和分步计数原理这两种计数原理可用于许多学科领域,如数论,几何学,统计学等。
下面是一些典型的应用示例:1. 在密码学中,分类计数原理和分步计数原理被用来设计可靠的密码系统,防止信息泄露。
2. 在机器学习中,使用分类计数原理和分步计数原理来构建决策树,以区分不同的数据集群。
分类计数原理与分步计数原理在概率统计中,分类计数原理和分步计数原理是两种常用的计数方法,它们在解决排列组合和概率计算问题时起着重要的作用。
本文将分别介绍这两种计数原理的概念、应用和区别。
分类计数原理是指将一个复杂的问题分解成若干个简单的子问题,通过计算每个子问题的解的个数,再将它们相加得到最终结果的计数方法。
这种方法在解决排列组合问题时特别有效。
例如,求一个集合中所有满足某种条件的子集个数,就可以通过分类计数原理将问题分解成若干个子问题,然后分别计算每个子问题的解的个数,最后将它们相加得到最终结果。
分步计数原理是指将一个复杂的问题分解成若干个步骤,通过计算每个步骤的解的个数,再将它们相乘得到最终结果的计数方法。
这种方法在解决排列组合问题时同样非常有用。
例如,求一个事件发生的总次数,就可以通过分步计数原理将问题分解成若干个步骤,然后分别计算每个步骤的解的个数,最后将它们相乘得到最终结果。
分类计数原理和分步计数原理在解决问题时各有优势。
分类计数原理适用于将复杂问题分解成简单子问题的情况,而分步计数原理适用于将复杂问题分解成若干步骤的情况。
在实际问题中,我们可以根据具体情况选择使用分类计数原理或分步计数原理,以便更快更准确地解决问题。
需要注意的是,分类计数原理和分步计数原理并不是互斥的,有时候我们也可以将它们结合起来使用。
在解决某些复杂问题时,结合使用这两种计数原理可以更好地拆解问题,从而更高效地求解。
总之,分类计数原理和分步计数原理是解决排列组合和概率计算问题时常用的计数方法,它们在实际问题中具有重要的应用价值。
通过灵活运用这两种计数原理,我们可以更好地解决各种复杂的计数问题,提高问题求解的效率和准确性。
分类加法计数原理和分布乘法计数原理一、回顾教材·知识梳理分类加法计数原理:完成一件事有n 类不同方案,在第1类方案中有m 1种不同的方法,在第2类方案中有m 2种不同的方法,.....在第n 类方案中有m n 种不同的方法,那么完成这件事共有 种不同的方法.(对应微体验1、2)分布乘法计数原理:完成一件事需要n 个步骤,做第1步有N 1种不同的方法,做第2步有N 2种不同的方法,…做第n 步有N O 种不同的方法,那么完成这件事共有 种不同的方法.(对应微体验3、4)分类加法计数原理 分步乘法计数原理 联系都是完成一件事的不同方法种数的问题 区别 1、 分类2、 每类办法都是独立完成,并且只需一种方法就可完成这件事。
3、 互斥且独立1、 分步2、 “步步相依”即各个步骤是相互依存的,必须每步都完成了,才算做完这件事 注意分类要“不重不漏” 分步要“步骤完整” 二、基础检测·查漏补缺微体验1:用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码? 微体验2:在填写高考志愿时,一名高中毕业生了解到,",#两所大学各有一些自己感兴趣的强项专业,如表:问1:如果这名同学只能选一个专业,那么他共有多少种选择?问2:在微体验2中,如果数学也是A 大学的强项专业,则A 大学共有6个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择种数为6+4=10.这种算法有什么问题?微体验3:用前6个大写的英文字母和1~9个阿拉伯数字,以"1,"2…"9,#1,#2,…的方式给教室里的一个座位编号,总共能编出多少种不同的号码?微体验4:某班有男生30名,女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?三、考点分类·全面突破考点一:分类加法计数原理的应用例1:在所有的两位数中,个位数字大于十位数字的两位数的个数为( )变式1:设a ,b ,c∈{1,2,3,4},若以a ,b ,c 为三条边的长构成一个等腰三角形,则这样的三角形有 个。