分支界限法
- 格式:pptx
- 大小:264.57 KB
- 文档页数:34
c++最大团问题分支限界法
C++最大团问题分支限界法
最大团问题是一类典型的计算机视觉算法,是一种经典的NP难问题。
它的出处可以追溯到1960年代的军事合作活动,它是一个试图确定由一系列正交关系中的最大团的问题。
为了解决该问题,具有一组称为“分支限界法”(Branch and Bound)的方法已经开发出来,它是一种基于回溯的搜索算法。
分支限界法主要是通过组合所有可能的顶点组合来求解最大团问题。
该算法从一个指定顶点顺序表开始,依次检查每个顶点,组合每个子团,直到它找到最大的团为止。
算法步骤如下:
(1)将所有顶点按照一定的顺序排序,然后将它们放入一个队列中。
(2)移除队列中的第一个顶点并将其加入当前团中。
(3)继续循环,检查剩余顶点是否需要加入当前团,如果确定它们满足条件,则将它们加入当前团。
(4)检查团大小是否达到最大值。
(5)如果当前团的大小小于最大值,则回到步骤2,继续检查剩余顶点是否可以加入团中。
(6)重复步骤2到5,直到找到最大团为止。
该算法通过在搜索空间中枚举所有可能的节点组合,来求解最大团问题。
尽管该算法可以有效地解决最大团问题,但它也存在一些弊端,例如,该算法的时间复杂度非常高(O(n^2)),因为它需要搜索所有可能的节点组合。
这就是该算法的局限性。
回溯法与分支限界法
回溯法和分支限界法是两种常见的搜索算法,它们被广泛应用于解决优化问题、约束满足问题以及决策问题等。
1. 回溯法:
回溯法是一种基于试错的搜索算法。
它通过搜索解空间树来寻找问题的解。
在搜索过程中,回溯法会尝试不同的分支,也就是不同的可能解,直到找到解或者确定无解。
如果一条路径上无法得到解,回溯法就会回溯到上一步,尝试其他的分支。
回溯法的优点是它可以找到问题的所有解,而且对于一些问题,它能够找到最优解。
然而,它的缺点是如果问题的解空间树太大,那么回溯法可能会需要大量的时间和空间。
2. 分支限界法:
分支限界法是一种有约束的深度优先搜索算法。
它也是一种用于求解优化问题的算法。
在分支限界法中,搜索过程被分为两个阶段:扩展阶段和限界阶段。
在扩展阶段,算法会生成所有可能的候选解,并将它们加入到候选解集中。
在限界阶段,算法会根据一些启发式信息对候选解进行排序,并只考虑排在最前面的候选解。
这样可以大大减少搜索的时间和空间复杂度。
分支限界法的优点是它可以找到问题的最优解,而且它的时间复杂度是可以控制的。
然而,它的缺点是如果问题的解空间树太大,那么它可能需要大量的内存来存储候选解。
总的来说,回溯法和分支限界法都是非常重要的搜索算法,它们在不同的场景下都有各自的优势和适用性。
分支限界法求单源最短路径分支限界法是一种求解最优化问题的算法,在图论中,可以用来求解单源最短路径。
本文将介绍分支限界法的基本原理和步骤,并通过一个具体的示例来说明其应用。
一、分支限界法简介分支限界法是一种穷举搜索算法,通过不断地将问题空间划分成更小的子问题,以寻找最优解。
它与传统的深度优先搜索算法相似,但在搜索过程中,通过引入上界(界限)来限制搜索范围,从而有效地剪枝和加速搜索过程。
分支限界法求解单源最短路径问题的基本思想是,首先将源点标记为已访问,然后以源点为根节点构建一棵搜索树,树中的每个节点表示当前访问的顶点,并记录到达该顶点的路径和权值。
通过遍历搜索树,逐步更新最短路径以及当前最优权值,从而找到最短路径。
二、分支限界法的步骤1. 创建搜索树:- 将源点标记为已访问,并将其作为根节点。
- 根据源点与其他顶点之间的边权值构建搜索树的第一层。
- 初始化当前最优路径和权值。
2. 遍历搜索树:- 从当前层中选择一个未访问的顶点作为扩展节点。
- 计算到达该扩展节点的路径和权值,并更新当前最优路径和权值。
- 根据已有的路径和权值,计算该扩展节点的上界,并与当前最优权值进行比较。
若上界小于当前最优权值,则进行剪枝操作,否则继续搜索。
- 将该扩展节点的子节点添加到搜索树中。
3. 更新最短路径:- 当搜索树的所有叶子节点都已遍历时,找到最短路径以及相应的权值。
三、示例分析为了更好地理解分支限界法的运行过程,我们将通过一个具体的示例来进行分析。
假设有一个有向带权图,其中包含5个顶点和6条边。
首先,我们需要构建初始搜索树,将源点A作为根节点。
根据源点与其他顶点之间的边权值,我们可以得到搜索树的第一层B(2)、C(3)、D(4)、E(5)。
接下来,我们从第一层选择一个未访问的顶点作为扩展节点。
假设选择节点B进行扩展。
此时,我们计算到达节点B的路径和权值,并更新当前最优路径和权值。
对于节点B,到达它的路径为AB,权值为2。