分支限界法
- 格式:ppt
- 大小:866.50 KB
- 文档页数:57
分支限界法解题算法框架分支限界法是一种建模和求解复杂优化问题的有效算法,它源于笛卡尔的科学思想,被认为是能够解决复杂优化问题的革命性工具。
它的基本思想是:分支限界法以树状结构的方式求解优化问题,不断的分割搜索空间,找到最优解。
1、分支限界法的基本概念分支限界法是求解优化问题的一种方法,它将解空间划分为若干个子空间,在每个子空间中评估优化指标,根据分支限界准则,搜索最优解。
它主要分为以下几个步骤:(1)定义一个有限的决策空间,并设置目标函数的优化指标;(2)将决策空间划分为若干个子空间,并设置有效限界和分裂标准;(3)在每个子空间中进行搜索,并进行评价;(4)根据评价结果,重复(2)、(3)步骤,直至满足停止条件,搜索得到最优解。
2、分支限界法的优势分支限界法是一种求解优化问题的有效算法,它在优化技术中占有很重要的地位。
其优势在于:(1)分支限界法可以使用更少的计算量,求解复杂的优化问题;(2)分支限界法采用分支和分割的方式,可以更好的避免搜索局部最优,获得更可靠的最优解;(3)分支限界法可以认为是一种智能化、自适应的搜索技术,它可以有效提高计算效率;(4)分支限界法易于理解,实现比较容易,可以节省程序员的工作量和计算时间。
3、案例应用分支限界法在很多领域有广泛的应用,其中最常见的应用是解决资源分配问题。
可以将需要分配的资源划分为若干个变量,然后使用分支限界法寻找该资源分配问题的最优解。
在运输问题中,如果要在有限的时间内最大限度地利用车辆从一个汽车站点出发,向其他若干个目的地发送货物,可以使用分支限界法来求解,以便在有限的时间内找到最优解。
在装配线调度问题中,如果要解决多个工序同时进行的装配线调度问题,则可以使用分支限界法来求解。
4、总结分支限界法解题算法是一种求解优化问题的有效算法,它将求解空间划分为若干个子空间,采用分支和分割的方式,找到最优解。
该算法具有计算量小、避免搜索局部最优、易于实现等优点,可以用于解决复杂优化问题,在资源分配、运输、装配线调度等领域都有广泛的应用。
一、分支限界法:分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。
但在一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出T 中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使用某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。
分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。
为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。
二、分支限界法的基本思想:分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。
在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所求的解或活结点表为空时为止。
三、选择下一扩展结点的不同方式:从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。
最常见的有以下两种方式:1、队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。
分支限界法求单源最短路径分支限界法是一种求解最优化问题的算法,在图论中,可以用来求解单源最短路径。
本文将介绍分支限界法的基本原理和步骤,并通过一个具体的示例来说明其应用。
一、分支限界法简介分支限界法是一种穷举搜索算法,通过不断地将问题空间划分成更小的子问题,以寻找最优解。
它与传统的深度优先搜索算法相似,但在搜索过程中,通过引入上界(界限)来限制搜索范围,从而有效地剪枝和加速搜索过程。
分支限界法求解单源最短路径问题的基本思想是,首先将源点标记为已访问,然后以源点为根节点构建一棵搜索树,树中的每个节点表示当前访问的顶点,并记录到达该顶点的路径和权值。
通过遍历搜索树,逐步更新最短路径以及当前最优权值,从而找到最短路径。
二、分支限界法的步骤1. 创建搜索树:- 将源点标记为已访问,并将其作为根节点。
- 根据源点与其他顶点之间的边权值构建搜索树的第一层。
- 初始化当前最优路径和权值。
2. 遍历搜索树:- 从当前层中选择一个未访问的顶点作为扩展节点。
- 计算到达该扩展节点的路径和权值,并更新当前最优路径和权值。
- 根据已有的路径和权值,计算该扩展节点的上界,并与当前最优权值进行比较。
若上界小于当前最优权值,则进行剪枝操作,否则继续搜索。
- 将该扩展节点的子节点添加到搜索树中。
3. 更新最短路径:- 当搜索树的所有叶子节点都已遍历时,找到最短路径以及相应的权值。
三、示例分析为了更好地理解分支限界法的运行过程,我们将通过一个具体的示例来进行分析。
假设有一个有向带权图,其中包含5个顶点和6条边。
首先,我们需要构建初始搜索树,将源点A作为根节点。
根据源点与其他顶点之间的边权值,我们可以得到搜索树的第一层B(2)、C(3)、D(4)、E(5)。
接下来,我们从第一层选择一个未访问的顶点作为扩展节点。
假设选择节点B进行扩展。
此时,我们计算到达节点B的路径和权值,并更新当前最优路径和权值。
对于节点B,到达它的路径为AB,权值为2。
分支限界法典型例题分支限界法(Branch and Bound)是一种常见的算法分析技术,用于解决搜索问题和动态规划问题。
以下是一些分支限界法的典型例题:1. 最长公共子序列(LCS):求给定两个字符串的最长公共子序列。
可以使用分支限界法,首先找出两个字符串中的不同字符出现的次数,然后用哈希表存储这些计数器。
最后,遍历哈希表中的每个计数器,找到最大的计数器的值,即为最长公共子序列的长度。
2. 背包问题(Knapsack problem):给定一个背包,容量为64,有多个选项,每个选项的重量和容量不限。
求给定背包中可以放入的最大重量的背包物品。
可以使用分支限界法,首先列出所有可能背包容量的组合,然后用枚举法找出每个背包容量下可以放入的最大重量的物品,最后计算出可以放入的最大重量的物品数量。
3. 最短路径问题(Shortest Path problem):给定一个二维图,目标为找到从源点出发,到达所有目标点的路径。
可以使用分支限界法,首先找出图中的所有节点和它们之间的联系,然后用递归算法计算每个节点到源点的路径。
最后,通过剪枝,可以找到最短路径。
4. 最大子数组和问题(Maximum Subarray and Problem):给定一个数组,求出其中任意一个元素的最大值。
可以使用分支限界法,首先找出数组中的最小值和最大值,然后用递归算法计算每个元素的最大值。
最后,通过剪枝,可以找到最大子数组和问题。
5. 模拟退火问题(Simulated Annealing Problem):给定一个概率分布,求出在一定条件下,随机变量的取值分布。
可以使用分支限界法,首先找出概率分布中所有可能的取值,然后用模拟退火算法计算在这些取值中随机变量的取值分布。
最后,通过剪枝,可以找到最优解。
分支限界法的结束条件
分支限界法的结束条件是:当排列树的叶节点成为当前扩展节点时,算法结束。
具体来说,当活结点表为空时,算法结束。
如果不是,则进入计算扩展结点的所有子节点是否满足约束条件,对于不满足约束条件的子节点,将以该节点为根的子树剪枝(丢弃)。
然后根据限界函数,计算该节点满足约束的所有子节点的限界。
对于限界差于当前最优解的子节点(废了,没潜力),将以该子节点为根的子树丢弃;对于限界优于当前最优解的子节点(还有潜力),将这些潜力节点作为活叶子结点添加到活叶子表,并返回。
当一个叶结点成为当前扩展结点时,剩余活结点的下界值(lcost值),都
大于等于当前叶子节点处已找到的回路的费用。
它们都不可能导致费用更小的回路。
因此,已找到叶结点所相应的回路,是一个最小费用旅行售货员回路,算法结束。
以上内容仅供参考,建议查阅分支限界法相关书籍获取更全面和准确的信息。
分支限界法实验报告引言分支限界法是一种解决组合优化问题的常用方法,该方法通过对问题空间进行分割,并使用上、下界进行限制,从而快速得到较优解。
在本次实验中,我们主要使用分支限界法解决旅行商问题(TSP),即给定一组城市和各城市之间的距离,求解经过所有城市且距离之和最小的路径。
实验目的本次实验的目的是通过编写程序,利用分支限界法求解旅行商问题,并分析算法的效率和求解结果的优劣。
实验过程问题模型我们使用邻接矩阵来表示城市之间的距离,并通过回溯法和分支限界法来求解最优解。
其中,回溯法用于生成所有可能的路径,而分支限界法则用于剪枝和获取最优解。
在分支限界法中,我们将问题抽象为一个树形结构,树的每个节点代表选择了某一条路径。
同时,我们定义一个上界来限制搜索的范围,并实时更新下界以筛选一些无效的路径。
通过不断剪枝和对路径进行排序,我们最终可以得到最优解。
算法实现我们使用Python语言实现了分支限界法求解旅行商问题的算法。
具体实施步骤如下:步骤1:生成邻接矩阵根据给定的城市和距离,我们首先生成一个邻接矩阵,用于表示各个城市之间的距离。
步骤2:初始化数据结构我们使用一个优先队列来保存当前搜索的路径,并将起始城市加入队列。
同时,我们定义一个全局变量来保存最优路径和当前最优路径的长度。
步骤3:搜索路径通过递归的方式,不断进行路径的搜索。
在搜索过程中,我们使用上、下界和分支限界来进行剪枝操作,并实时更新最优路径信息。
步骤4:输出结果最终,我们得到的最优路径就是旅行商问题的解。
我们将其输出,并统计算法的运行时间。
实验结果实验数据我们使用了一个包含20个城市的实例进行测试,城市之间距离的数据如下:城市距离-1 -2 101 - 3 15... ...19-20 12结果分析经过多次实验,我们得到了最优路径如下:1 -> 3 -> 10 -> 5 -> 17 ->2 -> 12 -> 11 -> 4 -> 9 -> 16 -> 6 -> 19 -> 18-> 13 -> 20 -> 15 -> 8 -> 7 -> 14 -> 1该路径的总距离为123,是经过所有城市且距离之和最小的路径。
用分支限界法设计算法的步骤
分支限界法是一种用于求解组合优化问题的算法,其设计步骤如下:
1. 定义问题:明确问题的目标、限制条件和可行解的性质。
对于组合优化问题,通常需要定义一个目标函数来评估可行解的优劣程度。
2. 定义状态空间:状态空间是指所有可能的解构成的空间。
对于组合优化问题,每个解通常由若干个决策变量组成,因此状态空间可以看作是每个决策变量可能取值的所有组合。
3. 设计结点扩展规则:结点扩展规则是指如何从一个状态(结点)扩展到下一个状态(结点)。
通常,扩展一个结点可以通过改变其中一个或多个决策变量的取值。
扩展后得到的新状态需要满足问题的限制条件,并且其目标函数值不能劣于当前最优解。
4. 设计界限函数:界限函数是指用于剪枝的函数,用于判断某个结点及其子树是否需要继续扩展。
界限函数可以通过对目标函数进行估计得到,一般采用上界或下界来限制搜索空间。
5. 设计搜索策略:搜索策略是指如何选择下一个要扩展的结点。
通常,选择下一个结点时需要考虑界限函数和估价函数,选择使得界限函数最小或估价函数最小的结点进行扩展。
在实际应用中,需要根据具体问题的特点和需求,对上述步骤进行适当调整和优化。
回溯法(Backtracking)和分支限界法(Branch and Bound)都是求解组合优化问题的常用算法,它们在解空间中搜索最优解的过程中有所不同。
1. 回溯法:
回溯法是一种穷举搜索的算法,通过逐步构建候选解,然后根据约束条件进行判断,如果当前的候选解不能满足约束条件,就进行回溯,撤销上一步的选择,继续搜索其他可能的解。
回溯法常用于求解排列、组合、子集等问题。
回溯法的基本思想是深度优先搜索,在搜索的过程中利用剪枝策略来减少搜索空间。
回溯法的核心是递归实现,在每一层递归中,都会进行选择、判断和回溯操作。
2. 分支限界法:
分支限界法是一种利用剪枝策略进行搜索的优化算法,它通过设置一个界限值,将搜索空间划分为多个子空间,并对每个子空间中的解进行评估。
根据评估结果,可以确定某些子空间中不可能存在更优解的情况,从而剪去这些子空间,减少搜索代价。
分支限界法的基本思想是广度优先搜索,通过优先级队列或堆结构来选择下一个扩展节点。
在搜索的过程中,根据问题的特点和限界条件,确定分支的方向,并对每个扩展节点进行评估。
相比于回溯法,分支限界法在搜索过程中可以更加高效地剪去无效子空间,从而减少不必要的搜索量。
它适用于需要在可能解空间中找到最优解或满足某个目标的问题。
总结:
回溯法是一种穷举搜索的方法,通过递归实现,在搜索过程中进行选择、判断和回溯操作;而分支限界法利用剪枝策略,在广度优先搜索的基础上,通过设定界限值来剪去无效子空间。
两种算法在实际应用中根据问题的特点和求解目标选择使用。
分支限界法和回溯法
分支限界法和回溯法都是求解优化问题的算法策略。
但它们在求解问题的过程和方法上存在明显的不同。
1. 分支限界法:
分支限界法是一种在穷举法的基础上,设法避免其缺点、提高效率的算法。
它的基本思想是将原始问题分解为若干个子问题,然后逐个求解。
在求解过程中,分支限界法会不断地扩展子树的分支,然后在满足限界条件的情况下,剪去不符合限界条件的分支。
分支限界法的核心思想是:在每一步选择中,算法会优先选择约束条件最少的子节点进行扩展,从而在搜索过程中限制了生成的子节点的数量。
2. 回溯法:
回溯法是一种按照深度优先搜索策略的穷举搜索法。
它通过深度优先搜索解空间树,从根节点出发深度搜索解空间树,当搜索到某一节点时,如果该节点可能包含问题的解,则继续向下搜索;反之回溯到其祖先节点,尝试其他路径搜索。
回溯法的核心思想是:通过深度优先搜索,从上到下、从左到右地搜索解空间树。
当搜索到某一节点时,如果该节点可能包含问题的解,则继续向下搜索;否则回溯到其祖先节点,继续尝试其他路径搜索。
总结:
分支限界法和回溯法都是求解优化问题的算法策略。
分支限界法通过分解问题和优先选择约束条件最少的子节点来提高效率;而回溯
法则通过深度优先搜索解空间树和回溯到祖先节点来尝试其他路径搜索。
在实际应用中,应根据具体问题的特点和要求选择合适的算法策略。