分支限界法
- 格式:ppt
- 大小:866.50 KB
- 文档页数:57
分支限界法解题算法框架分支限界法是一种建模和求解复杂优化问题的有效算法,它源于笛卡尔的科学思想,被认为是能够解决复杂优化问题的革命性工具。
它的基本思想是:分支限界法以树状结构的方式求解优化问题,不断的分割搜索空间,找到最优解。
1、分支限界法的基本概念分支限界法是求解优化问题的一种方法,它将解空间划分为若干个子空间,在每个子空间中评估优化指标,根据分支限界准则,搜索最优解。
它主要分为以下几个步骤:(1)定义一个有限的决策空间,并设置目标函数的优化指标;(2)将决策空间划分为若干个子空间,并设置有效限界和分裂标准;(3)在每个子空间中进行搜索,并进行评价;(4)根据评价结果,重复(2)、(3)步骤,直至满足停止条件,搜索得到最优解。
2、分支限界法的优势分支限界法是一种求解优化问题的有效算法,它在优化技术中占有很重要的地位。
其优势在于:(1)分支限界法可以使用更少的计算量,求解复杂的优化问题;(2)分支限界法采用分支和分割的方式,可以更好的避免搜索局部最优,获得更可靠的最优解;(3)分支限界法可以认为是一种智能化、自适应的搜索技术,它可以有效提高计算效率;(4)分支限界法易于理解,实现比较容易,可以节省程序员的工作量和计算时间。
3、案例应用分支限界法在很多领域有广泛的应用,其中最常见的应用是解决资源分配问题。
可以将需要分配的资源划分为若干个变量,然后使用分支限界法寻找该资源分配问题的最优解。
在运输问题中,如果要在有限的时间内最大限度地利用车辆从一个汽车站点出发,向其他若干个目的地发送货物,可以使用分支限界法来求解,以便在有限的时间内找到最优解。
在装配线调度问题中,如果要解决多个工序同时进行的装配线调度问题,则可以使用分支限界法来求解。
4、总结分支限界法解题算法是一种求解优化问题的有效算法,它将求解空间划分为若干个子空间,采用分支和分割的方式,找到最优解。
该算法具有计算量小、避免搜索局部最优、易于实现等优点,可以用于解决复杂优化问题,在资源分配、运输、装配线调度等领域都有广泛的应用。
一、分支限界法:分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。
但在一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出T 中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使用某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。
分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。
为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。
二、分支限界法的基本思想:分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。
在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所求的解或活结点表为空时为止。
三、选择下一扩展结点的不同方式:从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。
最常见的有以下两种方式:1、队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。
分支限界法求单源最短路径分支限界法是一种求解最优化问题的算法,在图论中,可以用来求解单源最短路径。
本文将介绍分支限界法的基本原理和步骤,并通过一个具体的示例来说明其应用。
一、分支限界法简介分支限界法是一种穷举搜索算法,通过不断地将问题空间划分成更小的子问题,以寻找最优解。
它与传统的深度优先搜索算法相似,但在搜索过程中,通过引入上界(界限)来限制搜索范围,从而有效地剪枝和加速搜索过程。
分支限界法求解单源最短路径问题的基本思想是,首先将源点标记为已访问,然后以源点为根节点构建一棵搜索树,树中的每个节点表示当前访问的顶点,并记录到达该顶点的路径和权值。
通过遍历搜索树,逐步更新最短路径以及当前最优权值,从而找到最短路径。
二、分支限界法的步骤1. 创建搜索树:- 将源点标记为已访问,并将其作为根节点。
- 根据源点与其他顶点之间的边权值构建搜索树的第一层。
- 初始化当前最优路径和权值。
2. 遍历搜索树:- 从当前层中选择一个未访问的顶点作为扩展节点。
- 计算到达该扩展节点的路径和权值,并更新当前最优路径和权值。
- 根据已有的路径和权值,计算该扩展节点的上界,并与当前最优权值进行比较。
若上界小于当前最优权值,则进行剪枝操作,否则继续搜索。
- 将该扩展节点的子节点添加到搜索树中。
3. 更新最短路径:- 当搜索树的所有叶子节点都已遍历时,找到最短路径以及相应的权值。
三、示例分析为了更好地理解分支限界法的运行过程,我们将通过一个具体的示例来进行分析。
假设有一个有向带权图,其中包含5个顶点和6条边。
首先,我们需要构建初始搜索树,将源点A作为根节点。
根据源点与其他顶点之间的边权值,我们可以得到搜索树的第一层B(2)、C(3)、D(4)、E(5)。
接下来,我们从第一层选择一个未访问的顶点作为扩展节点。
假设选择节点B进行扩展。
此时,我们计算到达节点B的路径和权值,并更新当前最优路径和权值。
对于节点B,到达它的路径为AB,权值为2。
分支限界法典型例题分支限界法(Branch and Bound)是一种常见的算法分析技术,用于解决搜索问题和动态规划问题。
以下是一些分支限界法的典型例题:1. 最长公共子序列(LCS):求给定两个字符串的最长公共子序列。
可以使用分支限界法,首先找出两个字符串中的不同字符出现的次数,然后用哈希表存储这些计数器。
最后,遍历哈希表中的每个计数器,找到最大的计数器的值,即为最长公共子序列的长度。
2. 背包问题(Knapsack problem):给定一个背包,容量为64,有多个选项,每个选项的重量和容量不限。
求给定背包中可以放入的最大重量的背包物品。
可以使用分支限界法,首先列出所有可能背包容量的组合,然后用枚举法找出每个背包容量下可以放入的最大重量的物品,最后计算出可以放入的最大重量的物品数量。
3. 最短路径问题(Shortest Path problem):给定一个二维图,目标为找到从源点出发,到达所有目标点的路径。
可以使用分支限界法,首先找出图中的所有节点和它们之间的联系,然后用递归算法计算每个节点到源点的路径。
最后,通过剪枝,可以找到最短路径。
4. 最大子数组和问题(Maximum Subarray and Problem):给定一个数组,求出其中任意一个元素的最大值。
可以使用分支限界法,首先找出数组中的最小值和最大值,然后用递归算法计算每个元素的最大值。
最后,通过剪枝,可以找到最大子数组和问题。
5. 模拟退火问题(Simulated Annealing Problem):给定一个概率分布,求出在一定条件下,随机变量的取值分布。
可以使用分支限界法,首先找出概率分布中所有可能的取值,然后用模拟退火算法计算在这些取值中随机变量的取值分布。
最后,通过剪枝,可以找到最优解。
分支限界法的结束条件
分支限界法的结束条件是:当排列树的叶节点成为当前扩展节点时,算法结束。
具体来说,当活结点表为空时,算法结束。
如果不是,则进入计算扩展结点的所有子节点是否满足约束条件,对于不满足约束条件的子节点,将以该节点为根的子树剪枝(丢弃)。
然后根据限界函数,计算该节点满足约束的所有子节点的限界。
对于限界差于当前最优解的子节点(废了,没潜力),将以该子节点为根的子树丢弃;对于限界优于当前最优解的子节点(还有潜力),将这些潜力节点作为活叶子结点添加到活叶子表,并返回。
当一个叶结点成为当前扩展结点时,剩余活结点的下界值(lcost值),都
大于等于当前叶子节点处已找到的回路的费用。
它们都不可能导致费用更小的回路。
因此,已找到叶结点所相应的回路,是一个最小费用旅行售货员回路,算法结束。
以上内容仅供参考,建议查阅分支限界法相关书籍获取更全面和准确的信息。