布里渊区1
- 格式:ppt
- 大小:1.23 MB
- 文档页数:10
布里渊区通俗理解-概述说明以及解释1.引言1.1 概述布里渊区是一个在物理和数学领域中具有重要意义的概念,它主要用来描述在给定条件下某一物体或物体集合的邻域。
布里渊区的概念源于法国物理学家亚历山大·布里渊的研究成果,他发现了一种描述物体在空间中的局部特性的方法。
布里渊区的概念不仅在物理学领域中被广泛应用,同时也在计算机图形学、材料科学、生物学等领域中具有重要作用。
在本文中,我们将深入探讨布里渊区的概念、应用以及重要性,希望能够对读者有所启发和帮助。
通过了解布里渊区的相关知识,我们可以更好地理解物体在空间中的局部结构和特性,为我们探索和应用这些知识提供了理论基础。
在日常生活中,布里渊区的概念也有着重要的意义,可以帮助我们更好地理解世界的复杂性,促进科学技术的发展和创新。
展望未来,布里渊区的研究和应用将会不断深化和拓展,为人类社会的进步和发展做出更大的贡献。
1.2 文章结构本文将分为三个主要部分来讨论布里渊区的通俗理解。
在引言部分,我们将简要介绍布里渊区的概念、文章结构和撰写本文的目的。
在正文部分,我们将详细探讨布里渊区的概念,其在实际应用中的情况以及在各领域中的重要性。
最后,在结论部分,我们将总结布里渊区的作用,讨论其在日常生活中的意义,并展望未来布里渊区的发展方向。
通过这样的结构安排,读者可以系统地了解布里渊区的相关知识,并深入理解其在现实生活中的应用和意义。
1.3 目的2.正文2.1 布里渊区的概念布里渊区(英文名为Boulevard区)是一种在计算机科学领域中常用的概念,用于描述一种数据结构的布局方式。
布里渊区是指内存中的一段连续地址空间,通常用来存储程序代码、全局变量和静态变量。
在操作系统中,布里渊区还可以用于存放动态链接库和共享库的代码段和数据段。
布里渊区的特点是具有一定的大小和位置,可以在运行时被操作系统动态地分配和回收。
布里渊区的概念主要用于优化内存管理和提高程序的执行效率。
§5.5 布里渊区本节我们举例说明二维和三维晶格的布里渊区。
一、二维正方格子正格子原胞基矢 a a a a == 2,1; 倒格子原胞基矢 ab a b π=π=22,21 。
如图5.10所示,倒格子空间离原点最近的倒格点有四个,相应的倒格矢为b b b b 2,2,1,1--, 它们的垂直平分线的坐标是 ak x π±= 及 a k y π±= 这些垂直平分线围成的区域就是简约布里渊区。
它也是一个正方形,其中一些特殊点和线有惯用的符号表示,中心:Γ; 边界线中心:X ; 角顶点:M; ΓX 线:∆; ΓM 线:∑。
离Γ点次近邻的四个倒格点相应的倒格矢是b b b b b b b b 21,21),2(1,21+--+-+它们的垂直平分线,同第一布里渊区边界围成的区域合起来成为第二布里渊区,这个区的各部分别平移一个倒格矢,可以同第一个区重合。
同理可得第三,第四,……,一系列布里渊区。
二、体心立方格子正基矢 )(21k j i a a ++-=, )(22a a +-= , )(23a a -+= 。
可证倒基矢 )(21k j ab +π= , )(22k i ab +π= , )(23i j ab +π= 。
(习题:证明bcc 的倒格子是fcc 。
)倒格矢:图5.10])21()31()32[(2332211k n n j n n i n n ab n b n b n G n +++++π=++= 离原点最近的有12个倒格点,其坐标可一般地写为)21,31,32(2n n n n n n a +++π. 具体写出是)0,1,1(2a π, )0,1,1(2aπ )0,1,1(2a π, )0,1,1(2aπ )1,0,1(2a π, )1,0,1(2aπ )1,0,1(2a π, )1,0,1(2aπ )1,1,0(2a π, )1,1,0(2aπ )1,1,0(2a π, )1,1,0(2aπ 相应的倒格矢长度为 π=22),,(321an n n G 这12个倒格矢的中垂线围成菱形正面体,称为简约布里渊区,如图5.11所示,其体积正好是倒格子原胞的大小。
布里渊区什么是布里渊区?布里渊区(BZ)是固体物理学中一个重要的概念,其最早由法国物理学家列昂·布里渊(León Brillouin)在20世纪20年代提出。
布里渊区是借助倒晶格空间来描述晶体中电子和光子的行为的一种方法。
在晶体中,原子排列周期性地重复组成晶格结构。
而倒晶格则是指晶体中的电子和光子在晶格结构的倒数上的重复。
布里渊区即为倒晶格的第一布里渊区,或称为第一布里渊区(First Brillouin Zone,简写为BZ)。
布里渊区的特性布里渊区具有一些重要的特性:1.紧密堆积:布里渊区是以最紧密堆积的原则生成的。
最紧密堆积是指在给定的晶体结构中,原子之间的距离最接近,空隙最小。
2.对称性:布里渊区具有一定的对称性。
这是因为晶体结构在倒晶格上也应当具有一定的周期性。
3.边界:布里渊区是由一系列平面所围成的多面体。
这些边界平面的位置和形状决定了布里渊区的形状。
4.特征矢量:布里渊区内存在一系列称为特征矢量(eigenwave vectors)的矢量。
特征矢量描述了晶格中的固有振动和电子的运动行为。
布里渊区与能带结构布里渊区在研究晶体的能带结构时扮演着重要的角色。
能带结构是指在固体中,能量与波矢之间的关系。
布里渊区的形状和大小直接影响着能带结构和材料的物理特性。
晶体中的电子在能带间跃迁时,受到能量和动量守恒定律的限制。
这意味着电子只能在布里渊区内跃迁。
因此,布里渊区可以看作是晶体中允许电子跃迁的特定动量范围。
通过绘制能带图,我们可以清楚地看到布里渊区内的能带结构。
能带图可以帮助我们理解晶体的电子行为和导电性质。
应用领域布里渊区的概念在固体物理学和材料科学的研究中有着广泛的应用。
一些典型的应用领域包括:1.半导体器件设计:在半导体器件的设计和优化中,布里渊区的概念可以帮助工程师理解晶体中电子的行为,从而指导材料的选择和器件性能的调整。
2.光学材料:布里渊区的理论框架为研究光学材料的光学性质提供了基础。
电子科技大学光电信息学院课程设计论文课程名称固体与半导体物理题目名称布里渊区的选取学号********** ********** **********姓名李雄风寿晓峰陈光楠指导老师刘爽起止时间2011.10.1-2011.10.152011年10月1日布里渊区的选取摘要本文着重介绍了布里渊区的选取。
首先,本文给出了倒格子和布里渊区的相关概念;随后,本文以一维的简单格子、二维的有心长方格子、三维的面心立方格子和体心立方格子为例,详细说明了布里渊区的选取过程;最后,本文介绍了制作面心立方格子和体心立方格子的第一布里渊区的实物模型的方法(附上实物模型)。
一、相关概念介绍1.1倒格子假设晶格原胞基失为a 1⃑⃑⃑ 、a 2⃑⃑⃑⃑ 和a 3⃑⃑⃑⃑ ,则对应的倒格子原胞基失为b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ ,它们满足如下关系:{ b 1⃑⃑⃑⃑ =2πΩ(a 2⃑⃑⃑⃑ ×a 3⃑⃑⃑⃑ )b 2⃑⃑⃑⃑ =2πΩ(a 3⃑⃑⃑⃑ ×a 1⃑⃑⃑ )b 3⃑⃑⃑⃑ =2πΩ(a 1⃑⃑⃑×a 2⃑⃑⃑⃑ ) 其中Ω=a 1⃑⃑⃑ ∙(a 2⃑⃑⃑⃑ ×a 3⃑⃑⃑⃑ )为原胞体积。
b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ 是不共面的,因而由b 1⃑⃑⃑⃑ 、b 2⃑⃑⃑⃑ 和b 3⃑⃑⃑⃑ 也可以构成一个新的点阵,我们称之为倒格子。
倒格子原胞基失也可以通过下式来定义(在处理一维和二维问题时我们将用到它):b i ⃑⃑⃑ ∙a j ⃑⃑⃑ =2πδij ={2π 当i =j 0 当i ≠ji,j =1,2,3 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。
倒格子是描述晶体结构周期性的另一种类型的格子,它是在波矢空间的数学表示,它的一个基矢对应于正格子中的一族晶面,因此可将晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。